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Abstract
Galactomannans and xyloglucans can be isolated from seeds with relatively high purity and yield; they are 

water soluble, non-toxic, and biocompatible. These polymers have broad spectra of potential use in medicine, from 
drug delivery systems to biological response modifiers. The biological activity of polysaccharides is intrinsically 
linked to their structural aspects. In general the chemical modification of galactomannans and xyloglucans, 
e.g., sulfation and complexation with oxovanadium, potentiate effects such as cytotoxicity against tumor cells, 
leishmanicidal activity, and activation of macrophages to release proinflammatory mediators. The wide range of 
seeds and structural variety favor the isolation of galactomannans and xyloglucans. This allows derivatives to be 
obtained with targeted properties and activity enabling their use in new applications in the biomedical area.
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Introduction
Seeds play a central role in plant reproduction and human nutrition. 

A seed contains all the genetic material and nutrients required for the 
successful propagation of the species. After germination, the reserve 
material is mobilized to sustain the plantlet before it becomes a self-
sufficient autotrophic organism [1,2].

Storage compounds can account for up to 90% of the seed’s dry 
weight and they are usually responsible for the economic value of 
seeds [1,2]. The main storage compounds accumulated in seeds 
consist of starch, triacylglycerols, and proteins [1]. Although starch is 
the most abundant storage carbohydrate, some seeds produce other 
polysaccharides, which are categorized as reserve compounds [3]. 
The best studied polysaccharides of this group are galactomannans 
and xyloglucans. The main reason is the interest due to the economic 
importance of these polymers, which can be used as thickening and 
stabilizing agents in the industry [3,4]. In addition, as galactomannans 
and xyloglucans can be isolated from seeds with relatively high purity 
and yield, are water soluble, non-toxic, and biocompatible, they are 
also suited for biological applications [5-10].

Galactomannans
Galactomannans are linear chains of β(1→4) D-mannosyl units, 

which are substituted by single α(1→6) linked D-galactopyranosyl 
residues as side chains. They are usually found in the endosperm of 
leguminous seeds and the Man/Gal ratio is species specific, typically 
ranging from 1.1 to 5.0 [3,4,11]. The yield of galactomannan can reach 
up to 38% of the seed weight [11]. It has been pointed out that more 
than 70 species of the family Leguminosae have been identified storing 
galactomannans [11]. The Man/Gal ratio and the distribution of the 
galactose units along the main chain strongly affect the functionalities 
of galactomannans [4]. On the other hand, the relation between Man/
Gal ratio and the biological function of galactomannans has not been 
established yet [4]. Guar (Cyamopsis tetragonolobus) and locust bean 
(Ceratonia siliqua) are the main sources of commercial galactomannans, 
which have Man/Gal ratios of 4:1 and 2:1, respectively. However, 
several other species have been described to contain galactomannans 
[11]. Among the alternative sources of galactomannans, Schizolobium 
amazonicum and Mimosa scabrella seeds have been investigated [3,12].

Regarding the biomedical area, galactomannans have broad 
spectra of applications, from potential drug delivery systems to 

biological response modifiers (BRMs) [7,13-18]. The latter ability 
enables some galactomannans to be used as immunomodulators 
[17,18]. Since galactomannans are heterogeneous and polydisperse 
polymers [19-21], several studies indicate that applications and effects 
of galactomannans are intrinsically linked to structural features of 
the polymers [4]. For example, matrix tablets of galactomannan from 
Senna tora seeds showed better ability for sustained release potential 
of losartan potassium when compared to the matrix tablets from 
other galactomannans, such as that prepared with guar gum [4]. In 
this regard, chemical modification of galactomannans can be used to 
improve specific applications [22-27]. Galactomannans extracted from 
Mimosa scabrella and Leucaena leucocephala seeds, after sulfation 
protected against infection by flavivirus [23]. Chrestaniet al. [28] 
also observed antiviral (antiherpectic and antirotavirus) effects by 
sulfated galactomannan from M. scabrella. Galactomannans from L. 
leucacephala seeds and their chemically sulfated derivative, both at 
the same concentration, were cytotoxic to HepG2 cells and decreased 
their viability by ~30% and 50%, respectively [24]. Chemically sulfated 
galactomannan from Dimorphandra gardneriana seed was cytotoxic 
to Vero cells while its unmodified form did not exhibit any effect 
[25] and the galactomannan from Senna macranthera showed strong 
anticoagulant activity after sulfation [26].

Galactomannans and their derivatives oxovanadium (IV/V)-
complexes were evaluated for cytotoxicity against tumor cell lines 
[29], immunomodulation, and leishmanicidal activities [26]. Native 
galactomannans (GALMAN-A) isolated from seeds of M. scabrella 
and its enzymatically hydrolyzed form (GALMAN-B), as well as their 
oxovanadium(IV/V) complexes designated GALMAN-A:VO2+/VO3+ 
and GALMANB:VO2+/VO3+, respectively, were evaluated in HeLa 
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Xyloglucan from Tropaeolum majus seeds inhibited the effect of the 
carcinogen 1-nitropyrene [47]. This effect opens possibilities to add 
the polymer to food as an antimutagenic agent. Xyloglucans from C. 
langsdorffii (XGC), H. courbaril (XGJ), and M. sloanei (XGM) seeds 
were evaluated for their biological response modifier capacity [48]. 
All three xyloglucans increased the number of macrophages in the 
peritoneal cavity and XGC was 3.3-fold more potent than XGJ to 
activate macrophages for nitric oxide production. In another study, 
XGC, XGJ, and xyloglucans from Tamarindus indica (XGT) stimulated 
mouse peritoneal macrophages to produce IL-1β, IL-6, and tumor 
necrosis factor alpha (TNF-α), except for XGC, which did not stimulate 
IL-6 production [49].

Amaral et al. [27] showed that XGJ, as well as its oxovanadium 
(IV/V) complex (XGJ:VO), exhibits important leishmanicidal effects. 
XGJ reduced growth of Leishmania (L.) amazonensis by 59% compared 
to the control, while XGJ:VO had a similar effect at 5-fold lower 
concentration. Additionally, XGJ:VO also increased IL-1β and IL-6 
levels by macrophages after the incubation of cells with the complex. 
Those studies clearly show that the intensity of effects is different for 
each polymer preparation. 

Data from the literature demonstrates that xyloglucans from 
different seeds can exhibit different biological effects due to differences 
in the fine structure of polymers. In addition, new biological effects can 
be achieved by xyloglucan modifications.

Conclusions and Perspectives
This minireview shows that galactomannans and xyloglucans 

from seeds can be readily obtained and possess a wide variety of 
characteristics, from proper physical chemistry properties that enable 
them to be used as vehicle to drugs to the ability to modify biological 
responses. Given the broad range of seeds, these polymers can be 
obtained at higher amounts to be used in broad spectra of applications. 

Immunomodulation is used to improve health by preventing and 
treating many diseases. In recent years, it has been demonstrated that 
the cure of leishmaniasis can be reached by activating the immune 
system. Thus, it can be suggested that many activities exhibited by 
galactomannans and xyloglucans from seeds, such as ability to form 
gels and their immunomodulating potential, enable them to be used 
in formulations for topical use in the treatment of diseases such as 
cutaneous leishmaniasis since local applications can contribute to 
treatment efficacy. This possibility is in progress in our group.
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cells [29]. Only the complexed forms promoted cytotoxicity against 
this cell line and GALMAN-B:VO2+/VO3+ was ~3-fold more potent 
than GALMAN-A:VO2+/VO3+. In another study, GALMAN-A and 
GALMAN-A:VO2+/VO3+ preparations modulated macrophages at 
different intensities to produce pro-inflammatory mediators [27]. 
The uncomplexed form increased nitric oxide production by ~33% 
compared to control, while GALMAN-A:VO2+/VO3+ inhibited it. On 
the other hand, the complexed form increased interleukin-1 beta (IL-
1β) and interleukin-6 (IL-6) by 45% and 139%, respectively, compared 
to GALMAN-A. Both preparations, i.e., GALMAN-A and GALMAN-
A:VO2+/VO3+, exhibited leishmanicidal activity against amastigotes of 
Leishmania (L.) amazonensis and reached ~60% toxicity. However, 
GALMAN-A:VO2+/VO3+ promoted this effect at a four-fold lower 
concentration than the uncomplexed form. In addition, GALMAN-A 
and its oxovanadium were three and 12 times more potent, respectively, 
than Glucantime (300 μg/mL), the main drug used in leishmaniasis 
treatment. Together, these data indicate that the suitable chemical 
modification contributes to potentiate the effect of galactomannans.

Xyloglucans
Storage xyloglucans consist of a cellulose-like backbone carrying 

single α-D-xylopyranosyl units attached to O-6, while some xylosyl 
residues were further substituted at O-2 by β-D-galactopyranosyl 
units. They are found in the cotyledons of some leguminous seeds 
[4]. The content of xyloglucan can reach up to 45% of the seed [6]. 
The only commercial source is Tamarindus indica (tamarind). Other 
leguminous seeds which were described to contain xyloglucans include 
Copaifera langsdorffii, Hymenaea courbaril, and Mucuna sloanei [6,30]. 
Xyloglucans from different sources can differ regarding side chain 
distribution patterns [6].

Xyloglucans possess broad spectra of application in textile, 
cosmetic, nutritional, and pharmaceutical industries [31]. Regarding 
the biomedical area, the main use of xyloglucans is in the preparation 
of formulations for drug delivery system [32-34] due to their capacity 
to form thermoreversible gels. When galactose units from xyloglucan 
are partially removed by enzymatic treatment, the modified polymer 
exhibits thermoreversible gelation in dilute aqueous solutions [35-37]. 
Due to the relatively low transition temperature of the gels, it is also 
used in formulations to sustain viscosity and improve application [38]. 
Tamarind xyloglucan hydrogel scaffolds have also been investigated 
for neural tissue engineering of the spinal cord [39]. The xyloglucan 
from T. indica seeds is the best studied [40], either in its native or 
chemically modified forms [41]. As observed for galactomannan, 
different biological effects of xyloglucans can be achieved by chemical 
or enzymatic modification of the native polymers. Some biochemical 
parameters, such as reduction of plasma lipids [42] and inhibition 
of D-glucose absorption in rats [43], have been observed for 
oligosaccharides obtained by partial hydrolysis of tamarind xyloglucan. 
These findings favor their use in formulations as antiobesity agents 
[31]. Xyloglucan from T. indica with different degrees of sulfation 
exhibited antiviral activity [44].

Tamarind xyloglucan was used by Bodin et al. [45] to modify 
cellulose to increase the adhesion of human endothelial cells to tissue 
while engineering blood vessels. Cao and Ikeda [46] observed that 
xyloglucan selenious ester and sulfated xyloglucan from Tamarindus 
indica were active against oxidative damage and tumors. According 
to those authors, the selenious derivative was more potent than the 
sulfated one.

Studies with xyloglucans from other seeds have been reported. 
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