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Introduction
The involvement of microglia in neurotransmission has been 

already proposed since many years ago. For example, NMDA-
mediated synaptic response was potentiated by microglia [1] and it 
was through the activation of the glycine site by secreting soluble 
factors released from primary cultured microglia [2]. It is now well 
known that microglia release substances that can affect neurons. These 
factors include several types of cytokines and chemokines, trophic 
factors like BDNF, the gaseous transmitter NO or neurotransmitters 
(ATP and Glu) [3]. In the lesion to the facial nerve that carries axons 
of motoneurons located in the facial nucleus, various factors released 
from activated microglia were detected; neurotrophic factors such as 
NGF, neurotrophin-4/5, TGF-β1, GDNF, FGF, and IL-3, which affect 
neuronal survival [4], as well as proinflammatory mediators such as 
TNF-α, IL-6, or NO, which confer neurotoxicity. In addition to these 
secretory activity, microglia proliferate, migrate to and interact with 
motor neurons ultimately removing synaptic input to those neuronal 
cells [5], depending on the pathologic context [6]. This removal of 
synaptic input, i.e. removal of synapses from neuronal cell bodies by 
microglia, was first recognized in the facial nerve injury model and 
termed synaptic stripping [7] and was well documented due to the 
recent advancement of electron microphotograph and in vivo imaging 
and transgenic animals [8,9].

All these information describes signals from activated microglia 
to neurons, regardless ‘‘find-me’’ or ‘‘eat-me’’ signals [10]. In contrast, 
what about signals from neurons to microglia?

As mentioned above in microglial factors, neurotransmitters 
(ATP, Glu, and probably others, too) might be the most plausible 
factors from neurons and synapses.

Microglia express almost all kinds of neurotransmitter receptors 

receptors [12,13], NMDA receptors [14] and metabotropic glutamate 
receptors (mGluRs) [15-17] are expressed in microglia. In addition, 
activated microglia express Glu transporters, EAAT-1/GLAST and 
EAAT-2/GLT-1 [18]. They may play an important role with respect to 
Glu-mediated neuron-glia interaction [19]. Although the physiological 
role of glial Glu receptors and GluT remains largely unknown, their 
potential roles include regulation of proliferation and differentiation, 
and modulation of synaptic efficacy.

Recent anatomical and functional evidence indicates that Glu 
receptors on immature glia are activated through direct synaptic 
inputs. Therefore, Glu and its receptors appear to be involved in a 
continuous crosstalk between neurons and glia during development 
and also in the mature brain [20].
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Microglial cells actively contribute to tripartite synapses by direct contact or releasing diffusible factors. In neuron-
microglia interaction, there are number of candidates as microglial signalling to neurons, for example neurotrophic 
factors, pro-inflammatory cytokines and chemokines. However, little is known about neuronal signalling to microglia. 
Microglial cells express various kinds of neurotransmitter receptors including glutamate receptors; both ionotropic 
and metabotropic glutamate receptors. Among them, microglial AMPA receptors are impermeable to Ca2+ due to the 
expression of GluA2. GluA2 is an important subunit in determining the functional properties of AMPA receptors, such as 
Ca2+ -permeability, conductance, assembly and trafficking. Activation of microglia induces membrane translocation of 
GluA2, while internalization of other subunits occurs, and nearly homomeric GluA2 subunits are suggested as the main 
reason for low conductance of AMPA receptors in activated microglia. Since low expression of GluA2 was reported in 
some neurodegenerative diseases, lack of GluA2 in microglia as well as in neurons contribute to excitotoxicity by excess 
release of proinflammatory cytokines such as TNF-α. Therefore, involvement of microglia in glutamatergic synaptic 
transmission may be also important to understand the mechanism of some neurodegeneration in which low GluA2 is 
suggested.

[3,11]. Among them, glutamate (Glu) receptors including AMPA/KA 
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Glu Receptors and Glu Transporters in Microglia
Microglia express various type of neurotransmitter receptors 

[3]. Among them, it is surprising that microglia, the brain’s immune 
cell population, has Glu receptors, especially ionotropic types. 
The expression of microglial AMPA/KA receptors in resting state 
is heterogenous and low, about 20% of culture microglial cells 
show expression of AMPA/KA receptors [12,21]. Furthermore the 
electrophysiologically recorded membrane currents due to activation 
of AMPA/KA receptors were much smaller than neuronal ones (a 
couple of pA) unless the currents were augmented by cyclothiazide, 
an inhibitor of AMPAR desensitization. On the other hand, increase 
in KA receptor expression (GluA6 mRNA) in proliferating state in 
microglial cell line was reported [21], suggesting cell cycle-dependent 
regulation of KA receptors. The question was the functional role 
of these glutamate receptors in microglia. After the first report of 
AMPA/KA receptors in microglia, there is increasing evidence for 
primary cultured microglial AMPA receptor-induced events such 
as IGF-1 release [22], microglial chemotaxis [23], ATP release [23], 
TNF-α release [12,13] and upregulated c-fos expression [24]. However, 
the physiological and pathophysiological role of AMPA/KA receptors 
in microglia still remains unclear. Another type of ionotropic 
glutamate receptor, NMDA receptor, in microglia was first reported 
in rat microglia. Activation of microglial NMDA receptor triggers 
inflammation and neuronal cell death, which is probably only under 
pathologic condition; it was shown that damaged neurons further 
activate microglial NMDA receptor and trigger a release of neurotoxic 

back to neurons and possibly induce, aggravate, and/or maintain 
neurologic disease [14].

Microglia also express mGluRs. Group I mGluR was the first 
glutamate receptor reported in microglia [15], followed by reports on 
group II and III mGluRs in microglia [16,17]. There is some evidence 
that stimulation of group I mGluRs may regulate LPS-induced 
microglial activation in primary cultures [15]. The stimulation 
of group II mGluRs, either by glutamate or agonist of group II 
mGluRs, triggered the activation of microglial cells and induced 
neurotoxicity mediated through microglial release of TNF-α [25]. It 
was also suggested to participate in the activation of primary cultured 
microglia induced by chromogranin A, a secretory peptide present in 
neuritic plaques in Alzheimer’s disease [16]. In contrast, activation 
of group III receptors reduced microglial neurotoxicity following 
treatment with LPS or chromogranin A. On a molecular level, group 
III receptors inhibited activity of adenylate cyclase [17].

As for Glu transporter, it was reported that activated microglia 
express Glu transporters, EAAT-1/GLAST and EAAT-2/GLT-1, 
though baseline expression of GLT-1 and GLAST in naive animals 
is primarily localized in astrocytes [26] and it was reported that 
macrophages and microglia do not express GluTs as well as glutamine 
synthase in physiological conditions [27]. Insults to the CNS may 
upregulate microglial glutamate transporters. Reversed mode of the 
transporter can cause accumulation of Glu in the regions of injury. It 
was suggested that activated microglia prepared from primary culture 
trigger the elevation of extracellular Glu through their own release 
of Glu [28]. Treatment of primary cultured microglia with soluble 
amyloid β peptide also showed functional up-regulation of reverse-
mode of GluT, suggesting the release of Glu from microglia [29]. On 
the other hand, it was also shown that microglial Glu transporter has 
the ability of Glu uptake via GLT-1 without any stimulation [30]. These 
functional measurements, especially electrophysiological recording, 
may need to be done at 33-34°C [29].

Importance of GluA2 in Synaptic Transmission
Among AMPAR subunits, GluA2 (previously named as GluR-B, 

GluR2 or GluR-K2 [31]) plays a key role in determining the functional 
properties of AMPARs, such as Ca2+-permeability, conductance, 
assembly and trafficking [32]. In contrast, there are several reports 
suggesting a decreased expression of GluA2 in patients with 
neurodegenerative diseases such as Alzheimer’s and Creutzfeldt-Jakob 
disease [33,34]. In neurons lacking the edited GluA2 subunit, AMPA 
receptors exhibit high Ca2+ permeability [35]. With GluA2 subunit but 
not on the membrane surface, repetitive synaptic activation of Ca2+ 

-permeable AMPARs causes a rapid reduction in Ca2+ permeability 
and a change in the amplitude of excitatory postsynaptic currents, 
owing to the incorporation of GluA2-containing AMPA receptors 
[36]. Whereas when primary microglial cells were activated with 
LPS, more GluA2 was incorporated to the membrane surface and 
the conductance of AMPA receptors channels became smaller [37]. 
Thus, the switch in receptor subtype of AMPA receptor seems to be 
regulated by multiple signalling pathway in neuron and microglia. 
Most of the primary cultured rodent microglial cells express GluA2 
subunit, exhibiting low Ca2+ permeability [13]. However, under the 
pathological condition where less GluA2 subunits are expressed, 
high Ca2+ permeability and subsequent physiological responses are 
expected (Figure 1, left). On the other hand, under physiological 
condition with GluA2 subunit, expression of membrane surface 
GluA2 was upregulated depending on the activation of primary 
cultured microglia, limiting the conductance of AMPA receptor 
channel conductance [37] (Figure 1, right).

Dynamic Interaction of Microglial Processes with the 
Tripartite Synapse

It was already shown that processes from oligodendrocyte 
progenitor cells make close contact with neurons at pre- and 
postsynaptic structures [38]. Astrocytes have closer contact with 
synapses: in the grey matter, astrocytes are closely associated with 

 

Figure 1: Different combination of AMPA receptor subunits in microglia.
Microglia express AMPA-type of glutamate (Glu) receptors, which are highly 
Ca2+ impermeable due to the expression of GluA2 (center). However, when 
microglial cells are activated, for example by lipopolysaccharide, decreased 
expression of surface GluA1, GluA3, and GluA4 were indicated, while more 
surface GluA2 subunits were shown (right). Upregulation of GluA2 on the 
cell surface, probably by formation of GluA2 homomeric channels which 
causes very small current amplitudes. Under low expression of GluA2, which 
was reported in some neurodegenerative disorders such as Alzheimer’s 
disease and Creutzfeldt-Jakob disease AMPA receptors with GluA1, GluA3 
an GluA4 showed higher Ca2+-permeability (left), consequently inducing 
significant increase in the release of proinflammatory cytokines or reactive 
oxygen species (ROS).

factors from microglia in vitro, indicating that microglia can signal 
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neuronal membranes. In many cases, astroglial membrane completely 
or partially enwrap pre-synaptic terminals as well as post-synaptic 
structures [39]. Microglial processes, too, enwrap synapses extensively 
[8]. Being visualized by in vivo two-photon imaging in double-
transgenic mice in which microglial cells and neuronal structures 
can be simultaneously visualized, the microglial processes appear in a 
close proximity to presynaptic boutons, where they remain for about 
5 min and then retract [40]. A rather specific apposition of microglial 
processes to pre- as well as post-synaptic compartments was found in 
the visual cortex of juvenile mice. Microglial process extrusions were 
typically associated with small and transiently growing dendritic 
spines [8].

Like mentioned above, the highly dynamic surveillant motility 
of microglia in the resting state is specifically targeted to synaptic 

structures [40-42]. Molecular cues that attract microglial processes to 
the synapses remain largely unknown, however, glutamate as well as 
ATP are good potential candidates, at least in the microenvironment 
in glutamatergic synapses.

The wide potential of microglia to sense various activities of their 
adjacent cellular neighbours suggest that processes of microglia as 
well as astrocytes are in close proximity to synapses. While astroglial 
contacts are considered to be a permanent component of the ‘‘tripartite 
synapse,’’ microglial processes are much more dynamic than astroglial 
ones and display only transient interactions [41] (Figure 2).

What Happens if Expression of GluA2 is Low?
As mentioned above, GluA2 plays an important role in activated 

microglia due to increased expression on the surface membrane, 
attenuating Glu-induced response in activated microglia, as has 
been proposed in neurons [43]. Several reports provided in vivo 
immunohistochemical analysis of GluA2 expression in microglia 
upon neurodegenerative diseases such as brain hypoxia or multiple 
sclerosis [22,44], suggesting the possibility of importance of microglial 
GluA2. In Alzheimer’s or Creutzfeldt-Jakob disease, total expression 
of GluA2 is decreased although cell type was not determined [33,34]. 
To verify importance of microglial GluA2 in these diseases, we 
should investigate cell type expression pattern of GluA2 and its causal 
relationship with microglial inflammatory response. We propose 
that if microglial GluA2 is also decreased together with neuronal 
one, microglial inflammatory response would be augmented, due to 
increased Ca2+ permeability (Figure 2).

 

Figure 2: Effects of GluA2 deficiency on glutamate (Glu) transmission 
and tripartite synapse.
It has recently become evident that microglia constantly scan the brain 
environment and contact synapses. Under physiological condition, the 
highly dynamic surveillant motility of microglia is specifically targeted to 
synaptic structures: microglial processes dynamically contact the cellular 

processes. Three cell types composing tripartite synapse, neuron, astrocytes 
and microglia, express various types of glutamate receptors (AMPA, NMDA, 
kainite (KA), and metabotropic glutamate (mGlu) receptors), though they are 
quite heterogenous and some of which in glial cells have not been confirmed 
electrophysiologically. Microglia are highly motile not only in morphologically 
but also functionally. Under any kind of pathological condition, microglia are 
activated and the subunit composition of AMPA receptors changes; more 
GluA2 on the surface membrane and limited conductance of the channel. 
However, in some neurodegenerative disorders, less GluA2 subunits are 
reported, leading more Ca2+ permeability in all cells composing tripartite 
synapse. Especially activated microglia, transforming from non-responsive 
cells to highly Ca2+ permeable cells in response to glutamate, may cause 
excess release of proinflammatory cytokines, contributing more glutamate 
toxicity to neurons.

 

Figure 3: Lack of GluA2 in microglia induced more neurotoxicity in 
response to kainite (KA).
Nissl staining of hippocampal CA3 from either GluA2+/+ or GluA2-/- mice 
with intraperitoneal (i.p) injection of KA (30 mg/kg). More neuronal loss was 
observed in GluA2-/- mice than in GluA2+/+ mice. In the same CA3 region 
where black squares indicate, more TNF-α production and CD11b staining 
(marker of activated microglia) were observed in GluA2-/- mice than in 
GluA2+/+ mice after injection of KA (i.p.).

compartments of the tripartite synapse, as well as the perisynaptic astroglial 

It was reported that the Glu-mediated neuronal damage is 
strongly influenced by the AMPA receptors subtypes expressed in 
the CNS [34]. Within regions of high sensitivity in hippocampus, 
the AMPA receptor subunits GluA2 and GluA2/3 were decreased 
in accordance with the Braak stages of Alzheimer’s disease [34]. 
To investigate the effects of lack of GluA2 in microglia, GluA2-/- 
microglia was used [37]. The result from primary cultured microglia 
showed that Ca2+ -permeability through AMPARs was much higher in 
GluA2-/- than GluA2+/+ microglia and Glu-induced TNF-α release was 
increased in GluA2-/- compared to GluA2+/+ microglia. Furthermore, 
it was demonstrated that the increased inflammatory response in 
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Conclusions and Discussion
Dynamic translocation and increased surface expression of 

GluA2 occur in activated microglia as well as repetitively stimulated 
glutamatergic neurons, suggesting the loss of Glu-sensitivity under 
pathological condition. In microglia, GluA2 regulates not only Ca2+ 
permeability but also inflammatory response such as TNF-α release 
in response to Glu. Therefore, lack or decrease of GluA2 in microglia 
would induce more inflammatory response, and subsequently 
more neuronal loss. In our previous research, treatment with 
LPS increased GluA2 expression in microglia in vitro and in vivo 
condition. Actually, LPS is frequently used as a mouse model for 
sickness behaviour induced by peripheral inflammation, such as fever, 
anorexia, and lethargy [45], and also hyperalgesia [46]. In addition, 
TLR4, a receptor for LPS has been shown to be the main regulator 
for neuroinflammation in Alzheimer’s disease [47]. Thus, regulation 
of inflammatory response by GluA2 in microglia seems to have 
effects on these diseases. In the future, more precise investigation on 
the mechanism of GluA2 trafficking in microglia as well as that of 
internalization of other subunits should be solved. Understanding 
of these dynamic translocations of specific receptor subunits may 
lead to modification of synaptic transmission and rescuing neuronal 
excitotoxicity.
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