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Introduction
Given data, how to select an optimal model, according to some 

criteria, from a set of possible models is an important topic for 
statistician. Under the Bayesian framework, the success of choosing the 
right model relies on how accurately one can estimate the posterior 
probability of each of the possible models. Although the reversible jump 
MCMC (RJMCMC) algorithm [1] can work well for many Bayesian 
model selection problems for which the model space is simple, it is 
prone to get trapped into local optimal models when the model space 
is complex, i.e., consisting of a multitude of models separated by high 
energy barriers.

 To overcome the local-trap problem, [2] proposed a stochastic 
approximation Monte Carlo (SAMC) algorithm. The basic idea of 
SAMC can be described as follows. Suppose that we are interested in 
sampling from a distribution,

f(x) = cψ (x), x∈ X,   (1)
where X is the sample space and c is an unknown constant. Let E1,...,Ek 
denote a partition of X, and let wi = ∫Eiψ (x)dx for i=1,…,k. SAMC seeks 
to draw samples from the trial distribution
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Where πi’s are pre-specified constants such that πi >0 for all i and 
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=∑ , which define the desired sampling frequency for each

of the subregions. If w1,…,wk are known, sampling from fw(x) will 
result in a “random walk” in the space of subregions (by regarding 
each subregion as a point) with each subregion being sampled with 
a frequency proportional to πi. Hence the local-trap problem can be 
overcome essentially, provided that the sample space is partitioned 
appropriately. The way to partition sample space is problem dependent. 
For example, if one’s goal is to maximize the target distribution, then 
one can partition the sample space according to the density function; 
if one’s goal is at model selection, then one may partition the sample 
space according to the index of models.

The success of SAMC depends on whether wi’s can be well 

estimated. SAMC provides a systematic way to estimate wi in an online 
manner. Let θti denote the working estimate of log(wi/πi) obtained at 
iteration t, and let θt= (θt1,…, θtk) ∈ Θ, where Θ denotes a compact set.
Let {gt} be a positive, nondecreasing sequence satisfying
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for some value T0>1. Under the above setting, one iteration of SAMC 
consists of the following steps:

The SAMC algorithm:

Metropolis-Hastings (MH) sampling Simulate a sample ct by a 
single MH update with the invariant distribution
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Weight updating Set

θ*=θt+gt+1(et - p)   (6)

where et =(I(xt∈E1),…,I(xt ∈ Ek)) and I (⋅) is the indicator function. If θ*
∈ Θ, set θt+1=θ*; otherwise, set θt+1= θ*+C*, where C*=(c*,L,c*) can be
an arbitrary vector which satisfies the condition θ*+C*∈ Θ. Note that
fθ(x) is invariant to this location transformation of θ*.
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Abstract
The Bayesian model selection approach has been adopted by more and more people when analyzing a large data. 

However, it is known that the reversible jump MCMC (RJMCMC) algorithm, which is perhaps the most popular MCMC 
algorithm for Bayesian model selection, is prone to get trapped into local modes when the model space is complex. 
The stochastic approximation Monte Carlo (SAMC) algorithm essentially overcomes the local trap problem suffered by 
conventional MCMC algorithms by introducing a self-adjusting mechanism based on the past samples. In this paper, 
we propose a population SAMC (Pop-SAMC) algorithm, which works on a population of SAMC chains and can make 
use of crossover operators from genetic algorithms to further improve its efficiency. Under mild conditions, we show the 
convergence of this algorithm. Comparing to the single chain SAMC algorithm, Pop-SAMC provides a more efficient 
self-adjusting mechanism and thus can converge faster. The effectiveness of Pop-SAMC for Bayesian model selection 
problems  is examined  through a change-point  identification problem and a gene selection problem. The numerical 
results indicate that Pop-SAMC significantly outperforms both the single chain SAMC and RJMCMC.
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A remarkable feature of SAMC is its self-adjusting mechanism, 
which operates based on past samples. This mechanism penalizes the 
over-visited subregions and rewards the under-visited subregions, 
and thus enables the system to escape from local traps very quickly. 
Mathematically, if a subregion j is visited at time t,qt+1,j will be updated 
to a larger value,qt+1,i ← qt+1 + gt+1(1-pi), such that, this subregion has a 
smaller probability to be visited in the next iteration. On the other hand, 
for those regions, j(j≠i), not visited this iteration, qt+1,j will decrease to a 
smaller value,q q g p+ +← −1, , 1t j t j t j , such that, the chance to visit these 
regions will increase in the next iteration.

Although SAMC has been quite effective in sample space 
exploration, the convergence of qt is usually slow. Because, SAMC 
is run in a single chain. At each iteration, there is one and only one 
component of et is non-zero, and the information gained for qt is 
minimal and thus the adjustment process is slow. As a result, a large 
variation of qt can be observed even after long iterations, especially 
when the number of subregions is large.

 Inspired by the successes of population-based MCMC algorithms, 
e.g., adaptive direction sampling [3], conjugate gradient Monte Carlo 
[4], parallel tempering [5,6], and evolutionary Monte Carlo [7,8], we 
propose a population SAMC (Pop-SAMC) algorithm to accelerate 
the convergence of SAMC. The new algorithm works on a population 
of SAMC chains. The benefits are two-fold. Firstly, it provides a 
more efficient self-adjusting mechanism. Intuitively, when we have a 
population of SAMC chains running in parallel, the information gained 
for qt at each iteration is increased, which leads to a more accurate 
adjustment of qt. Consequently, this improves the convergence of 
qt. Secondly, running a population of chains in parallel enables the 
incorporation of crossover operators from the genetic algorithm [9] 
into simulations. With this operator, the distributed information 
across a population can be shared among chains/population, and this 
improve the efficiency of the new algorithm.

In this paper, we illustrate the use of Pop-SAMC for Bayesian 
model selection problems using a change-point identification example 
and a gene selection example. The numerical results show that the new 
method performs significantly better than both the single chain SAMC 
and RJMCMC, in estimating probabilities of competing models. A 
rigorous proof for the convergence of Pop-SAMC is provided in 
Appendix.

The remainder of this paper is organized as follows. In Section 2, we 
describe the Pop-SAMC algorithm and study its convergence theory. 
In Section 3, we illustrate Pop-SAMC using a multimodal example. In 
Section 4, we show the superiority of Pop-SAMC for Bayesian model 
selection problems by studying a change-point identification example 
and a gene selection example, along with comparisons with SAMC and 
RJMCMC. In Section 5, we conclude this paper with a brief discussion.

Population SAMC Algorithm
Population SAMC

Consider the distribution defined in (1). Suppose the sample space 
c has been partitioned into disjoint subregions, denoted by E1,…,Ek, 
and the same gain factor sequence {gt} as defined in (3) and (4) for the 
single chain SAMC, will be used for Pop-SAMC. 

 Pop-SAMC works on a population of SAMC chains in parallel. At 
each iteration, a set of samples, called a population, are generated. Let 

1( ,..., )t t t
Nx x x=  represent the population generated at iteration t, and N 

is the population size. One iteration of Pop-SAMC algorithm consists 
of the following two steps:

The Pop-SAMC algorithm

MH sampling: For each chain, simulate a sample t
ix  , for i=1,…,N, 

by a single MH update with the invariant distribution as defined in (5). 
A new population of samples Xt will be obtained. 

Weight updating: Set *
1
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q*; otherwise, set qt+1= q*+c*, where C*=(c*,…,c*) can be an arbitrary 
vector which satisfies the condition q*+ C* ∈ Θ.

Pop-SAMC is a generalized version of SAMC, with multiple 
independent samples (conditional on the current population) being 
generated at each iteration. This enables a frequency estimator for . 
Compared with the indicator vector et used in the single chain SAMC, 

t̂P  provides a more accurate estimator of Pt. This is the key reason why 
Pop-SAMC can outperform SAMC in terms of convergence of qt .

 Convergence

Regarding the convergence of the algorithm, we note that for the 
empty subregions, the corresponding components of qt will trivially 
converge to -∞ as t →∞. Therefore, without loss of generality, we show 
in Appendix only the convergence of the algorithm for the case that 
all subregions are non-empty. Extending the proof to the general case 
is trivial, since replacing (7) by (8) (given below) will not change the 
process of pop-SAMC simulation.
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and k0 is the number of empty subregions.

In our proof, we assume that Θ is a compact set; that is, there exists 
a constant vector ct for each t such that Ct + qt∈ Θ. This assumption is 
made only for the reason of mathematical simplicity. Extension of our 
results to the case that Θ=!m is trivial with the technique of varying 
truncations studied in [10,11]. Interested readers can refer to [12] for 
the details, where the convergence of SAMC is studied with Θ=!m. In 
the simulations of this paper, we set Θ = − 100 100[ 10 ,10 ]m  , as a practical 
matter, this is equivalent to setting Θ=!m.

Under the above assumptions, we have the following theorem 
concerning the convergence of the Pop-SAMC algorithm, whose proof 
can be found in Appendix.

Theorem Let E1,…,Em be a partition of a compact sample space cand 
y(x) be a non-negative function defined on c with y< < ∞∫0 ( )

iE
x dx  

for all Ei’s.Let p=(p,…,pm) be an m -vector with 0< pi<1 and p
=

=∑ 1
1m

ii . 
Let {gt} be a non-increasing, positive sequence satisfying (3). If Θ is 
compact and the drift condition [condition (A2) given in Appendix] is 
satisfied, then, as t→∞, we have almost surely, 
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where C is an unknown constant, p
∈ =∅
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i jj i Ev k k , and k0 is 
the number of empty subregions. 
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The constant C can be determined by imposing a constraint, e.g., 
q

=∑ 1
ti

m
i e is equal to a known number. 

 The drift condition assumption is classical, which implies the 
existence of the stationary distribution fq(x) for any q ∈ Θ. To have 
the drift condition satisfied, we assume that c is compact and f(x) is 
bounded away from 0 and ∞ on c. This assumption is true for many 
Bayesian model selection problems, for example, the Bayesian change-
point identification and the Bayesian regression variable selection 
problems considered in this paper. For both problems, after integrating 
out the model parameters, the sample space is reduced to a finite set 
of models. For continuum systems, one may restrict c to the region
{ }y y≥ min: ( )x x , where ymin is sufficiently small such that the region 
{ }y y< min: ( )x x is not of interest. Otherwise, one may put conditions on 
the tail of f(x) as prescribed by [11]. For the proposal distribution used 
in the MH sampling, we assume it to satisfy the local positive condition: 
There exists e1 > 0 and e2 > 0 such that e≥ 2( , )q x y  if e− ≤ 1x y  . This 
condition is quite standard and has been widely used in the study of 
MCMC convergence, [13].

Crossover

Another attractive feature of Pop-SAMC is that, with parallel 
independent running chains, information can be exchanged or 
shared between different chains to further improve the algorithm’s 
efficiency. Borrowing information from different chains can be done 
through crossover operators originated in the genetic algorithm [9]. 
One pioneer work in this direction is the evolutionary Monte Carlo 
algorithm (EMC) [7,8]. Motivated by successes of the EMC, we 
incorporate crossover into Pop-SAMC and below we only discuss the 
simplest case for illustration purpose. 

 Suppose we have a population X = (X1 ,…,XN) at iteration t, where 
= 1( ,..., )d

i i ix a a is a d-dimensional vector, the so-called an individual or 
chromosome. Let pc denote the crossover rate, and = ×[ ]c c eN N p  is 
the number of the chromosome in the current population that will be 
crossovered, where [z]e denotes the maximum even number smaller 
than z. For each iteration, the crossover operator works as follows:

Selection: Random select Nc chromosomes from the current 
population X, and randomly allocate them to form Nc/2 pairs. 

Crossover: For each of the pairs, ≠( , ) ( )i jx x i j , an integer 
crossover point C is first decided by drawing uniformly from {1,…d}, 
then two new chromosomes (yi,yj) are obtained by swapping the 
components of the two parental chromosomes to the right of the 
crossover point. As shown below.
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Following MH rules, the new chromosomes are accepted into the 
new population y with probability min(1,rc), and
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where =(( , ) | ( , )) (( , ) | ) (( , ) | ( , ))i j i j i j i j i jT y y x x P x x P y y x xx . (( , ) | )i jP x x x is the 
select probability of (xi,xj) from the population x and (( , ) | ( , ))i j i jP y y x x  

is the generating probability of (yi,yj) from the parental chromosomes 
(xi,xj). Since our parental chromosomes are chosen randomly from the 
population and by the symmetric properties of the crossover operator, 
it is easy to show that =(( , ) | ( , )) (( , ) | ( , ))i j i j i j i jT y y x x T x x y y . Thus, 
equation (10) will be reduced to the likelihood ratio between the new 
chromosomes and the old ones:
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In the Pop-SAMC, the crossover operation can be included in the 
MH Sampling step, Nc chromosomes are updated using the crossover 
operator, and (N-Nc) chromosomes are updated with a single MH step 
respectively according to the invariant distribution as defined in (5).

The rationale behind the effectiveness of crossover operators can be 
explained as follows. At each iteration, some samples obtained in one 
chain may be better than others in terms of likelihood values. If this 
chain happens to be selected for the crossover operation, by exchanging 
parts of its chromosome with other individuals, the overall quality of 
the whole population could be potentially improved.

An Illustrative Example
To illustrate the performance of Pop-SAMC in estimation of the 

sample space partitioning weight, we study a multimodal example [8], 
whose density function is given by 

20

2 2
1

1 1( ) exp ( )( )
2 2i i i

i

f x x xa m m
ps s=

 = − − − 
 

∑                 (12)

where each component has an equal variance s2 =0.02 and is assigned 
an equal weight 1 20... 0.05a a= = = . See [8] for the values of the mean 
vectors.

It is shown that some components are far from others, more 
than 30 times of the standard deviation in distance. This puts a great 
challenge on the testing algorithm.

Let = − 100 100 2[ 10 ,10 ]X , and let it be partitioned 
according to { }= −( ) log ( )U x f x , (In terms of physics, U(X) is 
called the energy function of the distribution), with an equal 
energy bandwidth ∆u=0.5 into the following subregions: 

{ } { } { }= < = ≤ < = >1 2 50: ( ) 0 , : 0 ( ) 0.5 ,..., : ( ) 24.0E x u x E x u x E x u x and the 

desired sampling distribution to be uniform p p= = =1 50
1...

50
. Both Pop-

SAMC and SAMC provide a self-adjusting mechanism for learning the 
partition weights p∫ ( ) /

i
iE

f x dx  , for i =1,…,50, in an online manner. 

With the uniform desired sampling distribution, the partition weight 
reduce to the probability that a sample is drawn from each subregion i, 
i.e. = ∫( ) ( )

i
i E

P E f x dx  . The true value of P(Ei) is calculated with a total of 
20 × 108 samples drawn equally from each of the twenty components of 
f(x). In order to have a fair comparison, we run both SAMC and Pop-
SAMC with the same number of energy evaluations, using the same 
proposal distribution and the same gain factor sequences.

Pop-SAMC was run 100 times independently with the setting: 
T0=50,N=10,K=50, and the number of iterations =105. SAMC was 
applied to this example 100 times independently with the same setting 
except for the following parameters: T0 =100 and the number of 
iterations=106. The computational results along with the true value of 
P(Ei) ‘s for i=2,…,9, are summarized in (Table 1), the results for other 
subregions with zero or tiny probability are not listed. The results show 



Citation: Wu M, Liang F (2011) Population SAMC vs SAMC: Convergence and Applications to Gene Selection Problems. J Biomet Biostat S1:002. 
doi:10.4172/2155-6180.S1-002

Page 4 of 9

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journalStatistical Methods: Markov Chain Monte Carlo

that Pop-SAMC has made a significant improvement in accuracy over 
SAMC in terms of standard deviations of the estimates of P(Ei)’s. On 
average, the standard error of the Pop-SAMC estimates is only about 
1/10 of that of the SAMC estimates. These results are achieved under 
the same number of energy evaluations for each of the algorithm, which 
made the comparison fair. In the table, we also reported the CPU times 
cost by a single run of each method to further clarify the fairness of our 
comparison. Pop-SAMC even cost less CPU time than SAMC in this 
comparison. In summary, Pop-SAMC can converge much faster than 
SAMC for estimation of the weight of subregions.

Bayesian Model Selection Problems
A Bayesian approach to model selection problems proceeds as 

follows. Suppose that we have a posterior distribution denoted by 
∝( | ) ( ) ( | )P m P m f my y , where y denotes the data, m is the model index, 

which belongs to a set of competing models, m∈M, and P(m) is the 
prior probability of model m, f(y/m) is the marginal likelihood, 
which is obtained by integrating out the model parameters. Different 
methods have been developed to estimate the posterior probability of 
all potential models. The criteria to judge each method is based on the 
accuracy of their estimation. 

 SAMC has been compared with RJMCMC in Bayesian model 
selection problem [2]. The results show that SAMC outperforms 
RJMCMC when the model space is complex. However, when the 
model space is simple, e.g., it only contains several models with 
comparable probability, SAMC may not be better than RJMCMC. 
On the other hand, compared with SAMC, Pop-SAMC has shown its 
superiority in estimating sample space partition weight. For model 
selection problems, the sample space is usually partitioned according 
to the model index by assuming that the MH chain can mix reasonably 
well in the sample space of each model. The weight of each partition is 
thus proportional to the posterior probability P(m/y) of each potential 
model. Accordingly, Pop-SAMC is expected to be more efficient in 
estimating the model probability than SAMC. In this section, we show 
the superiority of Pop-SAMC in Bayesian model selection problems 
by studying two typical examples. The results show that Pop-SAMC 
can make a significant improvement over SAMC and it can also work 
better than RJMCMC even when the model space is simple.

A change-point identification example

The change-point identification problem can be described as 
follows. Suppose we have a sequence of independent observations y 
= (y1,y2,…,yn)’ and they can be partitioned into blocks, such that the 

sequence follows the same distribution within blocks. Our goal is to 
identify the unknown number and the locations of the boundary, 
called change-point, between blocks. For simplicity, we assume that 
the observations within each block are drawn independently from a 
normal distribution m s 2( , )b bN , where b is the index of blocks. After a 
change-point, both the mean and variance may shift.

 In the literature, this problem has been studied by several authors 
using simulation-based methods, e.g., the Gibbs sampler [14], reversible 
jump MCMC [1], jump diffusion [15], and evolutionary Monte 
Carlo [7]. In this paper, we follow [7]’s approach, a latent vecotor is 
introduced to indicate the change-point position. Let Z = (Z1,…,Zn-1) 
be a latent binary vector associated with the observations index 
except for the last one, indicating the potential change-point, where 
Zi =1 indicates a change-point, and 0 otherwise. Let Z(k) correspond 
to a model with k change-point, with the unknown change-points 
being denoted by C1,…,Ck. For convenience, we let C0=0 and Ck+1=n 

+< < < < <0 1 2 1... k kc c c c c  and they follow the order .

Under the above setting, we have m s − < ≤2
1( , ),i b b b by N c i c  (13)

for b =1,2,…,k+1 and i=1,…,n. For model Z(k), the parameter vector is 
q m s m s+ +=( ) ( ) 2 2

1 1 1 1( , , ,..., , )k k
k kz . Let ck denote the model space 

with k change-points, Z(k) ∈ ck and −
== 1

0
n

kkX X . The log-likelihood 
function of model q(k) is then

q s m
s
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To conduct a Bayesian analysis for the model, we specify the fol-
lowing prior distribution for the model parameters: 

s a b m ∝2 ( , ), ( ) 1i iIG P                     (15)

where ⋅ ⋅( , )IG  denotes an inverse Gamma distribution with 
hyperparameters a,b, and an improper uniform prior is put on each 
mi. In addition, we assume that the latent vector Z(k) follows a truncated 
Poisson distribution,

l
l−

=

− −
∝ = −

−∑
( )

1

0

( 1 )!( ) , 0,1,..., 1.
( 1)!

!

k
k

j
n
j

n kP z k n
n

j

        (16)

Where l is a hyperparameter; n-1 is the largest number of change-
points allowed by this model. Conditioning on the number of change-
points k, we put an equal prior probability on all possible configurations 
of Z(k). By assuming that all the priors are independent, the log-prior 
density is

bq a s
s

+

=

  = − + + 
  

∑
1

( ) 2
2

1
( ) ( 1)log

k
k

k i
i i

P a                (17)

Estimates True Prob. (%) Pop-SAMC SAMC
 P(E2 ) 23.87 23.85(0.05) 23.65(0.85)

 P(E3 ) 30.27 30.25(0.06) 30.31(0.92)

 P(E4 ) 18.56 18.59(0.04) 18.13(0.46)

 P(E5 ) 11.24 11.21(0.02) 11.30(0.47)

 P(E6 ) 6.63 6.64(0.02) 6.27(0.12)

 P(E7 ) 3.84 3.85(0.01) 3.63(0.07)

 P(E8 ) 2.26 2.26(0.01) 2.15(0.04)

 P(E9 ) 1.34 1.34(0.00) 1.27(0.02)

CPU(s) --- 1.81 2.36

Table 1: Comparison of SAMC and Pop-SAMC for the multimodal example. The 
number in the parentheses is the standard deviation of the corresponding estimate. 
CPU: the CPU time (in seconds) cost by a single run of the corresponding algorithm 
on a Intel Core 2 Duo 3.0 GHz computer.

Figure 1: A comparison of the true change-point position (horizontal line) and 
the MAP estimates (vertical line).
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where { }a b a l= + − Γ + − − +( 1) log log ( ) log( 1 )! log .ka k n k k Combining 
the likelihood (14) and prior distributions (17), integrating out mi and 
s 2

i  for = +1,..., 1i k  and taking the logarithm, we get the following 
log-posterior density function
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Samples generated from the above posterior distribution can 
be used to estimate P(ck/y). For Pop-SAMC, if we let =k kE X and 
y ⋅ ∝ ( )( ) ( | )kP z y , it follows from (9) that θ θ−( ) ( )ˆ ˆ/ ti tjt t

i jw w e  forms 
a consistent estimator for the posterior probability ratio ( | ) / ( | )i jP PX Xy y

. Without loss of generality, we restrict our consideration to the models 
with ≤ ≤min max,k i j k , where kmin and kmax can be determined easily with 
a short pilot run of the above algorithm, the probability of those models 
outside this range is zero.

For the change-point identification problem, the details of the 
sampling step of Pop-SAMC are designed similarly to those described 
in [16], except for the weight updating step, which follows (9).

In this example, the simulated dataset consists of 1000 observations 
wi th −1 120,..., ( 0.5,1),y y N −121 210,..., ( 0.5,0.5),y y N 211 460,..., (0,1.5),y y N  

−461 530,..., ( 1,1),y y N 531 615,..., (0.5,2),y y N 616 710,..., (1,1),y y N
711 800,..., (0,1),y y N 801 950,..., (0.5,0.5),y y N  and 951 1000,..., (1,1).y y N  

The time plot is shown in (Figure 1). For this example, we set the 
hyperparameters a b= = 0.5,which forms a vague prior for s 2

i ; and set 
l=1. After a short pilot run, we set kmin = 7 and kmax =14

Pop-SAMC was run for this example 50 times independently with 
the following setting: 

N=20, T0=10, Iterations = 5×104 and p p= = =1 8
1... .
8  The results 

are summarized in (Figure 1) and (Table 2). Figure 1 shows the 
comparison between the eight true change-point pattern with its MAP 
(maximum a posteriori) estimate, which are (120, 210, 460, 530, 615, 
710, 800, 950) and (120, 211, 460, 531, 610, 710, 801, 939) respectively. 
The two patterns match very well except for the last point. A detailed 
exploration of the simulated dataset gives a strong support to the MAP 
estimate. The last ten observations of the second to the last block have a 
larger mean value than the expected and thus, they have been grouped 
into the last block. The MAP estimates also achieves larger log-posterior 
probability than that of the true pattern, which is 5305.57>5300.24.

For comparison, SAMC and RJMCMC were also applied to this 

example. Each algorithm was run 50 times independently. The results 
are summarized in (Table 2). SAMC employs the same setting as Pop-
SAMC except for two parameters, To=100 , Iterations=106 . RJMCMC 
employs the same transition proposals as those used by Pop-SAMC and 
SAMC and performs 106 iterations in each run. Under these settings, 
for a single run, each of the three algorithms performs exactly the same 
number of energy evaluations with the same transition proposals. 
Therefore, the comparisons made in (Table 2) are fair to each of the 
algorithm. The CPU time cost by each run is about the same for all 
methods. 

The comparison shows that Pop-SAMC works best among these 
three methods, with the smallest standard error achieved in estimating 
the posterior probability P(ck/y). As expected, RJMCMC works better 
than SAMC in this example. Because for this example, the model 
space is quite simple, containing only one mode with comparable 
probabilities. As previously mentioned, under such a situation, 
SAMC may not be better than RJMCMC. However, Pop-SAMC does. 
Although, Pop-SAMC is essentially an important sampling method as 
SAMC, its improved self-adjusting mechanism makes it much more 
efficient than SAMC. Amazingly, this improvement in its ability to 
learn from past samples enables Pop-SAMC to even conquer RJMCMC 
for those problems in which RJMCMC succeeds.

It is worth pointing out that, both Pop-SAMC and SAMC beat 
RJMCMC in the low probability model spaces, e.g. k =7,13,14, even 
though SAMC is worse than RJMCMC overall. The reason is the 
following. RJMCMC does not have self-adjusting ability: it samples 
each model in a frequency proportional to its probability. In contrast, 
due to their self-adjusting mechanism, Pop-SAMC and SAMC sample 
equally from each model space, they work well for the low probability 
model space as well as for the high probability part.

Finally, in order to further increase Pop-SAMC’s efficiency and fully 
use the information among the population, we incorporate crossover 
operator into the computation with 10% crossover rate and keep all 
other settings intact. The algorithm was run 50 times independently, 
and the results were also included in (Table 2) for comparison. 
Unsurprisingly, Pop-SAMC works more efficiently with the crossover 
operator. 

A Large Regression Model Selection Example

To have a further assessment of the performance of the Pop-SAMC 
in Bayesian model selection problems, we consider a linear regression 
variable selection example, in which the number of observations n is 
much less than the number of potential predictors p.

The linear regression model with a fixed number of potential 

Pop-SAMC 10%Cr Pop-SAMC SAMC RJMCMC
k prob(%) SD prob(%) SD prob(%) SD porb(%) SD
7 0.1029 0.0014 0.1009 0.0018 0.0949 0.0026 0.0998 0.0052
8 55.5077 0.2272 55.6082 0.2698 54.5699 0.6833 55.0832 0.3261
9 33.3677 0.1364 33.2264 0.1693 33.5970 0.4432 33.5365 0.1794
10 9.2642 0.0873 9.3098 0.1010 9.8146 0.2910 9.4942 0.1548
11 1.5646 0.0253 1.5633 0.0233 1.7117 0.0778 1.5884 0.0547
12 0.1767 0.0037 0.1756 0.0031 0.1943 0.0113 0.1813 0.0108
13 0.0150 0.0004 0.0149 0.0003 0.0165 0.0011 0.0153 0.0013
14 0.0010 0.0000 0.0010 0.0000 0.0012 0.0001 0.0012 0.0002

CPU(s) 16.1 16.2 16.2 15.2

Table 2: Comparison of the estimated posterior distribution for the change-point identification example. The number in the parentheses is the estimates of standard devia-
tion (SD). CPU: the CPU time (in seconds) cost by a single run of the corresponding algorithm on a Intel Core 2 Duo 3.0 GHz computer.
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b t t b t∝ ( | , , , ) ( ) ( | , , ) ( | ) ( )k k k k k k kL y X M P P X g P M q P q       (24) 
Integrating out t, bk and q from (24) and taking the logarithm, we 

get the log-posterior of model Mk (up to an additive constant),
= Γ +log ( | ) log ( 1)kP M y k

+ Γ − + − +log ( 1) log(1 )
2
kp k g − 

− − + 
' ' ' 1 'log ( )

2 1 k k k k
n gy y y X X X X y

g    
                  (25)

where g is specified by the user, which reflects their prior knowledge 
on the model space. Typically, large g concentrates the prior on 
parsimonious models with a few large coefficients, and small g tends 
to concentrate the prior on saturated models with small coefficients 
[18]. The evaluation of the posterior distribution involves inverting 
a matrix, which can be calculated in a recursive manner using the 
matrix inversion in block form, and this will save the computation cost 
tremendously.

Simulation study

The small n large p example is modified from some examples 
studied in [19,20]. The dataset is generated as follows. Let  150(0, )iz N I  
for i = 1,…,600 and define
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The response variable is defined as 

predictors {x1,x2,…,xp} takes the form 

e e t= b + X , (0, / )n ny N I                 (19)

where = '
1 2( , ,..., )ny y y y is the response vector,  =  11, ,..., pX x x is an 

× +( 1)n p design matrix, and b b b b= '
0 1( , ,..., )p is a (p+1) -vector of 

regression coefficients. The problem of interest is to find a subset model 
Mk of the form

e e t= b + X , (0, / )k k n ny N I              (20)
which is best under some criterion, where

 ≤ ≤ Χ =  
* * * *
1 10 , 1, ,..., , ,...,k k kk p x x x x  , are the selected predictors and

b b bb = * * * '
k 0 1( , ,..., )k  is the vector of regression coefficients of the 

subset model. For model Mk, the likelihood function is

t tb t b b
p

   
= − − −  
   

/2
'( | , , , ) exp ( ) ( ) .

2 2

n

k k k k k k k kL y X M y X y X
                    (21)
The prior distributions for each parameter are assigned as follows. 

We first assume t and bk are subject to the g priors [17],

t b t
t t

− 
∝  

 
 ' 11( ) , | , 0, ( ) ,k k k k

gP M N X X               (22)

where g is a hyperparameter. We further assume that all the p predictors 
are linearly independent, and each has the same prior probability q to 
be included in the model. Therefore, the prior probability imposed on 
the mode Mk is 

−= −( ) (1 ) ,k p k
kP M q q                                                (23)

with q being subject to the uniform distribution Unif [0,1].

Collecting the likelihood and prior distributions, we get the 
posterior distribution, 

t b( , , , | )k kP M q y

Pop-SAMC 10%Cr Pop-SAMC SAMC RJMCMC
k prob(%) SD prob(%) SD prob(%) SD porb(%) SD
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2125 0.3689
11 0.0000 0.0000 0.0000 0.0000 0.0012 0.0035 0.1345 0.2223
12 0.0000 0.0000 0.0000 0.0000 0.0052 0.0135 0.1515 0.1636
13 0.0001 0.0002 0.0001 0.0002 2.0299 6.5153 45.6895 8.4369
14 0.0001 0.0002 0.0001 0.0001 1.4000 4.4203 38.0850 6.8908
15 0.0000 0.0000 0.0000 0.0001 0.2382 0.7520 7.3470 1.2674
16 0.0000 0.0000 0.0000 0.0000 0.0245 0.0712 1.0135 0.2736
17 0.0000 0.0000 0.0000 0.0001 0.0082 0.0128 1.5905 5.0314
18 0.0000 0.0000 0.0000 0.0001 0.0135 0.0260 1.1135 1.5058
19 0.0000 0.0000 0.0000 0.0002 0.0059 0.0099 0.9490 1.0440
20 0.0000 0.0000 0.0000 0.0001 0.0021 0.0040 0.3740 0.5632
21 0.0000 0.0000 0.0000 0.0000 0.0005 0.0011 0.0930 0.1583
22 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0190 0.0361
23 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0035 0.0114
24 0.0001 0.0002 0.0001 0.0003 0.0080 0.0177 0.0005 0.0022
25 0.0000 0.0001 0.0001 0.0001 0.0029 0.0068 0.0005 0.0022
26 0.0001 0.0001 0.0001 0.0000 0.0008 0.0016 0.0000 0.0000
27 83.5210 1.0919 84.1339 1.4828 81.0277 10.0109 2.6935 12.0457
28 14.9215 0.9560 14.3358 1.2640 13.7389 2.2726 0.4760 2.1287
29 1.4415 0.1639 1.4189 0.2248 1.3769 0.2886 0.0460 0.2057
30 0.1080 0.0211 0.1037 0.0188 0.1077 0.0272 0.0040 0.0179
31 0.0071 0.0018 0.0066 0.0014 0.0071 0.0022 0.0000 0.0000
32 0.0004 0.0002 0.0004 0.0001 0.0004 0.0002 0.0000 0.0000

 Table 3: Comparison of the estimated posterior distribution  X y( | )kP  for the simulated large P linear regression example. The number in the parentheses is the estimates 
of standard deviation (SD).
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ε
=

= + +∑
60

31
1 ,i

i
y x                                                  (27)

where ε 150(0,4 )N I , and is independent of other predictor variables.

 For this example, we set the hyperparameter = 2max( , )g n p , the so 
called benchmark prior recommended by [19]. Given the full posterior 
distribution, in applying Pop-SAMC to this example, we follow the same 
fashion as in the change-point identification example. We first partition 
the sample space according to the model index k. Let = Xk kE , the model 
space with k selected variables, ∈Xk kM , and τψ η⋅ ∝( ) ( | , )kP M y . It 
follows from (9) that θ θ−( ) ( )ˆ ˆ/ ti tjt t

i jw w e  forms a consistent estimator 
for the posterior probability ratio X X( | ) / ( | )i jP y P y . We restrict the 
model space to be ≤ ≤min max,k i j k . After a pilot run, we set kmin = 10 
and kmax =40.

Again, we applied four algorithms to this example and compare 
their efficiency. Each algorithm was run 20 times independently. Firstly, 
Pop-SAMC was run for this example with the following setting: N=20, 
T0= 400, Iterations = 3× 105 and Then, we include crossover operator 
into Pop-SAMC. The modified algorithm was run for this example 
with 10% crossover rate while keeping all other settings intact. Finally 
SAMC and RJMCMC were applied to this example respectively. SAMC 
employs the same setting as Pop-SAMC except for one parameter, 
Iterations = 6× 106. RJMCMC also performs 6× 106 iterations in each 
run, with the first 50000 iterations being discarded for the burnin 
process. For all the four algorithms, the same transition proposal is 
used, and for a single run, each of them performs exactly the same 
number of energy evaluations. Therefore, the comparisons are fair to 
each of the algorithms. The computational results are summarized in 

(Table 3), those subregions with zero probability for all the algorithms 
are not listed.

The comparison shows that the order of the four algorithm in terms 
of efficiency for this example is Pop-SAMC with 10% crossover > Pop-
SAMC > SAMC> RJMCMC. This order is consistent with that in the 
change-point identification example, except SAMC beats RJMCMC 
this time. In fact, RJMCMC failed in this example, it chose the model 
M13 instead of the true model M27. This is because there are two modes 
in the model space, which are well separated. For RJMCMC, it does not 
have the self-adjust ability, which makes it easily get trapped into a local 
mode. However, all the other three algorithms have a self-adjusting 
mechanism, which enables them to get out of local trap and explore 
the whole sample space quickly. The efficiency improvement for Pop-
SAMC based algorithms over SAMC is also significant, especially at the 
true mode and low probability model space, e.g. k = 11:26. 

We further check the estimates of the marginal inclusion 
probabilities produced by Pop-SAMC and RJMCMC in a single run, 
which is shown in (Figure 2). From this plot, we may tell that all the 
27 variables selected by Pop-SAMC are in the true variables rang from 
31 to 60. Due to the correlation among the variable set, variable 32, 33 
and 34 were not selected. On the other hand, the variables selected by 
RJMCMC are also belong to the true variable set, but it only found 13 
out of the 27.

A Real data analysis

The dataset we studied here was generated by [21]. As described in 
[22], the experiment concerns the genetic basis for differences between 
two inbred mouse populations (B6 and BTBR). Based on their in-house 
selective phenotyping algorithm, 60 (B6×BTBR) −2 /F ob ob  mice (29 
males and 31 females) were selected. A total of 60 arrays were used 
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Figure 2: Estimates of marginal inclusion probabilities produced by (a) Pop-SAMC and (b) RJMCMC in a single run.
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to monitor the expression levels of 22,690 genes. Some physiological 
phenotypes were also measured by quantitative real-time RT-PCR, 
e.g. the numbers of stearoyl-CoA desaturase 1 (SCD1). The raw data 
are available in GEO (http://www.ncbi.nlm.nih.gov/geo; accession 
number GSE3330).

We treat the phenotypic value (SCD1) as the dependent variable, 
and the expression levels of genes as predictors. The value of SCD1 was 
first adjusted to remove the possible gender effects, then its correlation 
to each gene is calculated. We ordered the genes according to the 
correlation from high to low, and took the first 1000 genes as the 
potential predictors.

Three algorithms were applied to this dataset, Pop-SAMC, SAMC 
and RJMCMC. Each algorithm was run for this example 20 times 
independently. Follow the procedure in the simulation study, the 
sample space was partitioned according to the model index, and after 
a few pilot runs, we restricted the model space to be 1 ≤ k ≤ 10.In the 
pilot runs, we also found, with such a small number of observations, 
n = 60, setting g = p2 made the penalty to complex models so strong 
such that the mode was pushed around 1. In order to consider more 
potential models, we relaxed the penalty in priors and set g = p = 1000. 
The parameters for each algorithm were set as follows. For Pop-SAMC, 

N=10, T0=20 , Iterations = 6 × 104, and π π= = =1 10
1...

10
 ; SAMC 

employs the same setting as Pop-SAMC except T0=50 and Iteration = 
6 × 105; RJMCMC also performs 6 × 105 iterations with the first 20000 
iterations as warming. As in the simulation study, the same transition 
proposal is used for all the algorithms, and for a single run, each of them 
performs exactly the same number of energy evaluations. Therefore, 
the comparison is fair. The computational results are summarized in 
(Table 4).

The results is clear, Pop-SAMC works best among the three 
methods with the smallest standard error achieved in estimating the 
posterior probability of potential models. Since there is only one mode 
in the model space for this dataset, as an important sampling algorithm, 
SAMC can not beat RJMCMC overall, it only won the battle in the low 
probability model space. However, with the improved self-adjusting 
mechanism, Pop-SAMC has conquered RJMCMC in the whole model 
space.

Discussion
In this paper, we have proposed a Pop-SAMC algorithm, it works 

on a population of SAMC chains. Compared with single chain SAMC, 
the generalized algorithm can converge much faster. The superior 
efficiency of the new algorithm is demonstrated by Bayesian model 
selection problems. Our numerical results show that Pop-SAMC 
significantly outperforms both single chain SAMC and RJMCMC.

The success of the Pop-SAMC is based on two features. Firstly, 
the so-called population effect. Since it works with a population of 
SAMC chains, at each iteration, by integrating the information of all 
samples from each chain, it provides a more accurate estimation of Pt, 
therefore, the self-adjusting mechanism is more efficient. Secondly, 
running a population of chains in parallel enables incorporation of 
advanced operators, such as the crossover operator, snooker operator 
and gradient operator. With these population-based operators, the 
distributed information across a population at each iteration can be 
shared globally, which may further increase the algorithm’s efficiency. 
In addition, for each chain, Pop-SAMC keeps the self-learning feature 
of SAMC, which operates based on past samples. 

There remain much improvement space and a broader field of 
applications for the new algorithm. For instances, how to combine the 
multiple-try method with each chain of Pop-SAMC to increase the 
accept probability in dealing with high dimension space problems; are 
there any guidance to determine the population size and crossover rate 
instead of the trial and error scheme used in this paper? Regarding the 
application of the new algorithm, a promising research field is to design 
a Pop-SAMC based particle filter. 

The population setting of this algorithm provides good basis 
to develop advanced particle filter; moreover, Pop-SAMC has kept 
the two attractive feature of SAMC (i) superiority in sample space 
exploration and (ii) ability to generate weight-bounded importance 
samples. By taking advantage of these features, the notorious weight 
degeneracy problem encountered by traditional particle filter has a very 
good chance to be overcome. The authors are actively working on this 
field now.
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