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Abstract

This paper proves the log-concavity of polygonal and centered polygonal figurate number sequences and derives two recurrence formulas for 
these sequences. The log-concavity property is established by examining the second-order difference between consecutive terms, showing its 
non-negativity. The derived recurrence relations offer a practical method to compute subsequent terms based on previous ones. The proofs for 
both the log-concavity property and the recurrence formulas are provided, enhancing our understanding of these sequences and their 
mathematical properties.

Keywords: Figurate numbers • Log-concavity • m-gonal • Number sequences

Introduction
Figurate numbers, as well as a majority of classes of special 

numbers, have long and rich history. They were introduced in the 
Pythagorean school as an attempt to connect geometry and 
arithmetic [1]. A figurate number is a number that can be represented 
by a regular and discrete geometric pattern of equally spaced points 
[2]. It may be, say, a polygonal, polyhedral or polytopic number if the 
arrangement forms a regular polygon, a regular polyhedron or a 
regular polytope, respectively. In particular, polygonal numbers 
generalize numbers which can be arranged as a triangle (triangular 
numbers), or a square (square numbers), or in general as an m-gon 
for any integer m ≥ 3 [3].

Beyond classical polygonal numbers, there exists a multitude of 
other numbers that can be formed in the plane through points (or 
balls). Among them, the centered polygonal numbers emerge as a 
significant and distinct class of these numbers. The centered 
polygonal numbers (or, sometimes, polygonal numbers of the second 
order) form a class of figurate numbers, in which layers of polygons 
are drawn centered about a point. Each centered polygonal number is 
formed by a central dot, surrounded by polygonal layers with a 
constant number of sides. Each side of a polygonal layer contains 
one dot more than any side of the previous layer, so starting from the 
second polygonal layer each layer of a centered m-gonal number 
contains m more points than the previous layer [1].

  Some scholars studied the log-concavity or log-convexity of different 
numbers sequences such as Fibonacci and  hyper-Fibonacci numbers,

Lucas and hyper-Lucas numbers, Bell numbers, hyper-Pell numbers, 
Motzkin numbers, Fine numbers, Franel numbers of order 3 and 4, Ap
´ery numbers, large Schr¨oder numbers, central Delannoy numbers, 
Catalan-Larcombe−French numbers sequences, and so on [4-12]. 

   The author has reviewed the existing literature on the log-concavity 
and log-convexity of number sequences. While there is a wealth of 
research available, it is worth noting that no previous studies have 
specifically investigated the log-concavity or log-convexity of 
polygonal (or m-gonal) figurate number sequences. In light of this gap 
in the literature, the objective of this work is to thoroughly investigate 
the log-concavity behavior exhibited by polygonal figurate number 
sequences. By focusing on this particular type of number sequence, 
the research aims to shed light on a previously unexplored property of 
these sequences.

In a prior work [13], the author made an attempt to establish the 
proof of log-concavity for centered polygonal numbers. However, the 
present work aims to provide a more straightforward and concise 
proof for the log-concavity of centered polygonal numbers.

Additionally, this work goes beyond the investigation of log-
concavity by introducing two new recurrence formulas that are closely 
associated with polygonal and centered polygonal figurate number 
sequences. These recurrences not only enhance our understanding 
of the sequences themselves but also contribute to the broader field 
of mathematical research.
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By delving into the log-concavity behaviors of figurate number 
sequences and introducing new recurrences, this research not only 
addresses an existing gap in the literature but also expands our 
knowledge and insights in the field of combinatorics. The findings of 
this study have the potential to uncover new patterns and 
relationships within these sequences and may pave the way for 
further investigations and applications in various mathematical 
contexts.

The paper’s organization is as follows: Section 2 presents the 
definitions and mathematical formulations of figurate numbers. In 
section 3, we explore the log-concavity of sequences of figurate 
numbers. Section 4 discusses recurrence relations associated with 
polygonal and centered polygonal figurate numbers, and finally, 
section 4 is about the conclusions.

Discussion

Basic concepts and notations
Some properties of figurate numbers are given. In this paper we 

continue discussing the properties of m-gonal figurate numbers. Now 
we recall some definitions involved in this paper.

Definition 1. Let {sn}n ≥ 0 be a sequence of positive numbers. If for 
all j ≥ 1, s2

j ≥ sj−1sj+1, the sequence {sn}n ≥ 0 is called log-concave.

Definition 2. Let {sn}n ≥ 0 be a sequence of positive numbers. If for 
all j ≥ 1, s2

j ≤ sj−1sj+1, the sequence {sn}n ≥ 0 is called log-convex. In 
case of equality, s2

j=sj−1sj+1, j ≥ 1, we call the sequence {sn}n ≥ 0 
geometric or log-straight.

Definition 3. Let {sn}n ≥ 0 be a sequence of positive numbers. The 
sequence {sn}n ≥ 0 is log-concave (log-convex) if and only if its 
quotient sequence {(sn+1)/sn}n ≥ 0 is non-increasing (non-
decreasing).

Log-concavity and log-convexity are important properties of 
combinatorial sequences and they play a crucial role in many fields 
for instance economics, probability, mathematical biology, quantum 
physics and white noise theory [14-20].

We consider the sets of points forming some geometrical figures 
on the plane. Starting from a point, one can add two points to it so 
that the three points form an equilateral triangle. By adding three 
further points, one can form a six-point equilateral triangle. This can 
be repeated, see Figure 1a for an example and for further details. The 
numbers thus obtained are 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . . 
Sloane’s, and are called triangular numbers. For n ≥ 1, the n th 
triangular number is given by the formula

Sn=n(n+1)/2              (1)

By adding to a point three, five, seven, etc. points and arranging 
them in the form of a square, one obtain the numbers 1, 4, 9, 16, 25, 
36, 49, 64, 81, 100, . . . (Sloane’s A000290), which are called square 
numbers, see Figure 1b for an example. For n ≥ 1, the nth square 
number is given by the formula

Sn=n2 (2)

By adding to a point four, seven, ten, etc. points and arranging 
them in the form of a regular pentagon, one obtain the numbers 1, 5, 
12, 22, 35, 51, 70, 92, 117, 145, . . .(Sloane’s A000326), which are 
called pentagonal numbers, see Figure 1c for an example. For n ≥ 1, 
the nth pentagonal number is given by the formula

Sn=n(3n-1)/2 (3)

Following a similar approach, one can construct hexagonal, 
heptagonal, octagonal, nonagonal, decagonal numbers, . . . , m-gonal 
numbers if the arrangement forms a regular m-gon [1]. Form ≥ 3, the 
nth term m-gonal number denoted by Sn(m) is the sum of the first n 
elements of the arithmetic progression

1, 1 + (m−2), 1 + 2(m−2), 1 + 3(m−2), . . . .     (4)

Figure 1. Polygonal numbers.

The following lemma is important for understanding the m-gonal 
figurate number sequences. It presents a formula that allows us to 
calculate the nth term of the sequence using the values of n and m

Lemma 4. For all m ≥ 3 and n ≥ 1, the nth term of m-gonal figurate 
number is given by

Sn(m)=n/2[(m−2) n−m+4] (5)

Proof. To prove (5), it suffices to find the sum of the first n 
elements of (4). Hence the first n elements of the arithmetic 
progression given in (4) is:
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1, 1 + (m − 2), 1 + 2(m−2), 1 + 3(m − 2), . . . , 1 + (n − 1)(m-2), ∀m ≥ 3.

   Since the sum of the first n elements of an arithmetic progression s1, 
s2, s3, . . . , sn is equal to n/2 [s1+sn], it follows that

Sn(m) = n/2 [s1+sn]

=n/2 [1+(1 + (n−1) (m−2))] 

n/2 [2+(m−2) n−m+2] 

= n/2 [(m-2) n−m+4] or 

Sn(m)=(m−2/2) [n2−n] +n

  Beyond classical polygonal numbers, there are many other numbers, 
which can be constructed in the plane from points (or balls). The 
centered polygonal numbers form the next important class of such 
numbers.

Centered polygonal numbers, also known as polygonal numbers of 
the second order, belong to a category of figurate numbers that 
involve the construction of layers of polygons centered around a point. 
Each centered polygonal number consists of a central dot, which is 
then surrounded by successive layers of polygons with a fixed number 
of sides. In each layer, the number of dots on each side of the polygon 
increases by one compared to the previous layer. This pattern applies 
starting from the second polygonal layer, where each layer of a 
centered m-gonal number contains m additional points compared to 
the previous layer.

To illustrate this concept, consider the centered triangular number, 
which represents a triangle with a dot positioned at the center and 
additional dots arranged in successive triangular layers around it. The 
accompanying Figure 2a demonstrates the progression of 
constructing centered triangular numbers by adding a new layer of 
dots in the shape of a triangle around the previous figure at each step. 
The first few centered triangular numbers are 1, 4, 10, 19, 31, 46, 64, 
85, 109, 136, . . . Sloane’s A005448.

A centered square number is consisting of a central dot with four 
dots around it, and then additional dots in the gaps between adjacent 
dots, see Figure 2b for an example. The first few centered square 
numbers are 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, . . . Sloane’s 
A001844.

A centered pentagonal number represents a pentagon with a dot in 
the center and all other dots surrounding the center in successive 
pentagonal layers, see Figure 2c for an example. The first few 
centered pentagonal numbers are 1, 6, 16, 31, 51, 76, 106, 141, 181, 
226, . . . Sloane’s A005891.

Following this procedure, we can construct centered hexagonal 
numbers, centered heptagonal numbers, centered octagonal 
numbers, centered nonagonal numbers, centered decagonal 
numbers, etc.

In algebraic terms, the nth centered m-gonal number, denoted as 
Cn(m), can be derived by summing the first n elements of the 
sequence 1, m, 2 m, 3 m, Thus, according to the definition, we have:

Cn(m) = 1 + m + 2 m + 3 m + · · · + (n−1) m           (6)

By definition, the above formula leads to a recurrence relation for 
centered m-gonal numbers:

Cn+1(m) = Cn(m) + nm, C1(m)=1               (7) 

Cn(m) = 1+(m(n−1)n)/2                    (8)

  This formula allows us to directly calculate the nth centered m-gonal 
number without having to sum the individual terms of the sequence.

Log-concavity of polygonal numbers
In this section, our objective is to establish the log-concavity of 

polygonal and centered polygonal figurate numbers. We present a 
proof showing the log-concavity of these number sequences 
according to the provided definition. This result contributes to our 
understanding of the mathematical characteristics of polygonal 
figurate numbers and their potential applications in various fields.

  Theorem 5. For all m ≥ 3, the sequence {Sn(m)} n ≥ 1 of m-gonal figurate 
numbers is log-concave. Proof. To prove that the sequence {Sn(m)} n ≥ 1 
of m-gonal figurate numbers is log-concave for all m ≥ 3, we need to 
show that the second-order differences are non-negative. In other 
words, we need to prove that for all m ≥ 3 and for all n ≥ 1, we have:

S2
n (m) ≥ Sn−1(m)Sn+1(m) or S2

n (m)−Sn−1(m)Sn+1(m) ≥ 0 

We denote ℓ=(m-2)/2. Computing S2
n (m), Sn−1 (m) and Sn+1 (m),  it

+follows from (5) that
Sn(m)=n(ℓn−ℓ+1), Sn−1(m)=(n−1) (ℓ(n−1) −ℓ+1), and 

+Sn+1(m) = (n+1) (ℓ (n+1) − ℓ+1).

Now, let us consider S2
n (m)−Sn−1(m)Sn+1(m). We get 

S2
n (m)−Sn−1(m)Sn+1(m)                                                           (9)

= n2 (ℓn−ℓ+1)2−(n−1) (ℓ(n−1)−ℓ+1)(n+1)(ℓ(n+1)−ℓ+1)             (10)

=n2 (ℓn-ℓ+1)2−(n2−1) ((ℓn−ℓ+1)2−ℓ2)                                        (11)

= n2ℓ2+(ℓn−ℓ+1)2−ℓ2                                                                 (12)

≥ 0,                                                                                          (13)

where the last inequality follows by n ≥ 1.
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   This completes the proof.

Figure 2. Centered polygonal numbers.

   Furthermore, since the sum of the series m+2m+3m+ · · · + (n−1)m 
can be expressed as m (1+2+3+· · · +n−1)=(m(n−1)n)/2, we can 
derive a general formula for the nth centered m-gonal number:



Theorem 6. For all m ≥ 3 and n ≥ 2, the sequence {Cn(m)} of 
centered polygonal numbers is log-concave.

Proof. We aim to prove that the sequence of centered m-gonal 
figurate numbers, denoted as Cn(m), is log-concave for all m ≥ 3. To 
establish this, we need to prove that the second-order differences of 
the sequence are non-negative. In other words, we must show that for 
any m ≥ 3 and n ≥ 1, the inequality holds:

C2
n (m) ≥ Cn−1(m)Cn+1(m).

Alternatively, we can express this inequality as: 

C2
n(m) - Cn−1(m)Cn+1(m) ≥ 0.

To facilitate our proof, we introduce the variable η, defined as 
η:=(n−1)n/2. By employing equation (8), we can deduce the following 
expressions:

Cn (m)=1+(m(n-1)n)/2=1+mn,

Cn−1(m)=1 +(m(n−1−1) (n−1))/2=1+(m(n−1) n−2(n−1))/2=1+mη-mn+m,

and Cn+1(m)=1+(m (n+1−1) (n+1))/2=1+(m(n−1)n + 2n)/2=1+mη+mn. 

We proceed to evaluate the inequality:

C2
n(m) ≥ Cn−1(m)Cn+1(m)=(1+mη)2−(1+mη−mn+m)(1+mη+mn)   (14)

=(1 + mη)2−((1 + mη)(1+mη+mn)+(−mn+m)(1+mη+mn))             (15)

=(1+mη)2−((1+mη)2+(1+mη)mn+(−mn+m)(1+mη)+(−mn+m)mn)            (16)

=−mn(1+nη)−(1+mη)(−mn)+m (1+mη)+(−mn+m)mn (17)

=m2n2−m2n−m2η−m (18)

=m2(n2−n−η)−m (19)

=m2(2η−η)−m (20)

=m2η−m (21)

=m(mη−1) (22)

≥ 0, (23)

where the last inequality follows by m ≥ 3.

   Therefore, we established that the second-order differences of the 
sequence Cn(m) are non-negative, showing that the sequence is log-
concave for all m ≥ 3. and n ≥ 2.

Recurrence formulas for polygonal numbers
In the study of polygonal figurate number sequences, recurrence 

formulas play a crucial role. These formulas provide a systematic way 
of generating the terms of a sequence based on its previous terms. 
By utilizing recurrence formulas, mathematicians can efficiently 
compute and explore the properties of these sequences, revealing 
intriguing patterns and relationships.

  Theorem 7. For all integers m ≥ 3 and n ≥ 3, the following recurrence 
formulas for the sequence {Sn(m)} of m-gonal number sequences hold:

Sn(m)=R(n)Sn−1(m)+T(n)Sn−2(m) (24)

where R(n)=(m+2 (n−2) (m−2))/(1+ (n−2) (m−2)) and T(n)=(−m−1+ 
(n−2) (m−2))/(1+ (n−2)(m−2)), the initial values are S1(m)=1, S2(m)= 
m, and the recurrence of its quotient sequence is given by

xn−1=R(n) + T(n)/xn−2                                (25)

with the initial condition x1=m.

Proof. By definition, we have Sn+1(m)=Sn(m)+(1 + (m−2)n)       (26)

It follows that Sn+2(m) Sn+1(m)+(m−1+(m−2)n) (27) 

Rewriting (26) and (27) for all n ≥ 3, we have

Sn−1(m)=Sn−2(m)+(1+(m−2) (n−2)) (28)
Sn(m)=Sn−1(m)+(m−1+(m−2) (n− )) (29) 

   Multiplying (28) by m-1+ (m−2) (n−2) and (29) by 1 + (m-2) (n−2), 
and subtracting as to cancel the non-homogeneous part, one can 
obtain the homogeneous second-order linear recurrence for Sn(m):

    By denoting

R(n)=(m+2 (n-2) (m-2))/(1+ (n-2)(m-2))

   and

T(n)=(m-1+ (n-2) (m-2))/(1+ (n-2) (m-2) 

one can obtain Sn(m)=R(n)Sn−1(m)+T(n)Sn−2(m), ∀n, m ≥ 3       (30)

with given initial conditions S1(m)=1 and S2(m)=m. By dividing (30) 
through by Sn−1(m), one can also get the recurrence of its quotient 
sequence xn−1 as

xn−1=R(n)+(T(n)/xn−2), n ≥ 3 (31)

with initial condition x1=m

   Theorem 8. For all integers m ≥ 3 and n ≥ 3, the following recurrence 
formulas hold for the sequence {Cn(m)} of centered polygonal number 
sequences:

Cn(m)=R(n)Cn−1(m)+T (n)Cn−2(m)
where R(n)=2n−3/n−2 and T (n)=n–1/n−2, the initial values 

 C2(m)=1+m, and the recurrence of its quotient sequence is given 
by

yn−1=R(n)+(T(n)/yn−2)
with the initial condition y1=1+m.
Proof. To prove this theorem, we begin by using equation (8) to 

derive the following equation:
Cn+1(m)=Cn(m)+mn (32)
It follows that
Cn+2(m)=Cn+1(m)+m (n+1) (33) 
Rewriting (32) and (33) for n ≥ 3, we have
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Cn−1(m)=Cn−2(m)+m(n−2) (34) 

Cn(m)=Cn−1(m)+m(n−1) (35) 

 Next, we multiply equation (34) by m(n−1) and equation (35) by m(n
−2), and then subtract the two equations to cancel out the non-
homogeneous part. This allows us to obtain the homogeneous
second-order linear recurrence for Cn(m):

By denoting

2n−3/n−2=R(n) 

and −n–1/n−2=T (n),

one can rewrite the recurrence as follows:

Cn(m)=R(n)Cn−1(m)+T (n)Cn−2(m), ∀n, m ≥ 3                 (36)

  These recurrence relations hold for given initial conditions C1(m)=1 
and C2(m)=1+m. Dividing equation (36) by Cn−1(m), we can derive the 
recurrence relation for the quotient sequence yn−1 as:

yn−1=R(n)+(T(n)/yn−2), n ≥ 3 (37) 

with the initial condition y1=1+m. 

This completes the proof of the theorem.

Conclusion
The paper presented the results on polygonal figurate number 

sequences, uncovering the remarkable property of log-concavity in 
both polygonal and centered polygonal numbers. Furthermore, we 
introduced two recurrence formulas for these figurate number 
sequences that provide a systematic way to find subsequent numbers 
in the sequence based on previous terms. These contributions 
enhance our understanding and provide valuable tools for further 
exploration and analysis of polygonal figurate numbers.
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