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Introduction 
High energy ultra violet (UV) photons are known to affect 

interesting scientific and technological applications. In contrary, 
UV radiations also brings about severe biological and material 
vandalizations including damage of genetic material (DNA), Immune 
suppressions and skin photo aging, in addition to significant material 
damages. The observed degradation effects is owed to the sufficiently 
high energy of UV photons that brings about significant physico-
chemical changes in the material under study, leading to rapid 
photolytic and photo oxidative properties ensuing significant loss in 
material properties [1], which, in turn has led the scientific community 
towards the design and development of organic UV absorbers that 
acts as UV shieldants by transforming the absorbed high energy UV 
radiations into the less damaging phonons through various photo 
physical processes [2,3]. However, the organic UV absorbers are prone 
to weathering effects, thereby limiting their technological applications.

In recent years, organic-inorganic composite materials are being 
increasingly investigated as advanced technological materials for 
opto-electronic device fabrications, owing to their unique mechanical, 
photoelectric and thermal properties, arising from the synergistic filler 
(inorganic) – matrix (organic) interactions. In last few decades, the 
scientific community has been able to impose entirely new material 
properties on conventional materials by manipulation of matter at 
molecular levels. The molecular level engineering of matter facilitates 
a larger surface area which in turn accounts for the advanced material 
properties of nano sized materials in contrast to the bulk in accordance 
with earlier reports [4-9]. In the midst of the various physico-chemical 
properties of polymer nanocomposites, barrier protection against high 
energy UV radiations is of significant interest. In this context, many 
efforts have been addressed in the development of visibly transparent 
polymeric matrices with appreciable UV-shielding properties to be 
employed as UV protective coatings and optical filters [10-13].

Typically, metal oxide nanoparticles are integrated onto 
particle stabilizing polymers, allowing the preparation of hybrid 
nanocomposites with appreciable UV-shielding capabilities. These 
nanoparticles have been applied as UV-absorbing materials, owing to 
their low cost, and good environmental stability in addition to reduced 
toxicities. Thus, in the present research investigation, an attempt is 
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Abstract
Herein, we report the successful fabrication of a series of mechanically flexible poly (vinyl alcohol) (PVA) 

nanocomposite films with varying amounts of lithium doped stannous oxide (Li0.4Sn0.8O) nanofillers (i.e., 0.0, 0.5, 
1.0, 2.0 and 4.0 wt %) by mechanical shearing followed by film casting. The structural characterizations (FTIR) 
ascertain the success of lithium doped stannous oxide integrations with PVA matrix. While, electronic spectral studies 
sheds light on the changes in electronic band structure leading to a gradual decrease in optical band gaps associated 
electronic transition from valence band to conduction band. The UV-visible transmittance study substantiates the 
ability of nano fabricated polymeric films to efficiently shield UV radiations, in particular UVA radiations and thereby 
act as highly flexible and visible transparent UVA protective coatings.

made to induce UVA shielding properties in highly flexible and visible 
transparent poly (vinyl alcohol) (PVA) matrix to be employed as UVA 
protective coatings.

Experimental Methods
Lithium doped stannous oxide (Li0.4Sn0.8O) nanoparticles have 

been prepared by a previously reported gel combustion technique with 
slight modifications. The PVA/ Li0.4Sn0.8O NC films were developed by 
suitably dissolving varying weight fractions of Li0.4Sn0.8O nano fillers. 
The resultant solutions were subjected to mechanical shearing followed 
by ultra sonication, so as to achieve uniform filler dispersions. The 
homogenized PVA/ Li0.4Sn0.8O aqueous solutions were then casted 
onto clean glass molds and allowed to dry under ambient atmosphere. 
The fabricated visibly transparent nano composites with a thickness of 
0.30-0.34 mm were subjected to spectral characterizations.

The Fourier Transform Infrared (FTIR) spectrum of the PVA 
and its PVA/Li0.4Sn0.8O nanocomposite (NC) films analogues were 
recorded in the spectral wave number range 4000-400 cm-1 using 
JASCO 4100 spectrometer, Japan, with a maximum resolution of 0.9 
cm-1. The electronic spectral details of fabricated films were established 
by Schimadzu-1800 spectrophotometer, Japan, in the spectral range of
200-800 nm.

Results and Discussion
The Fourier Transform Infrared spectroscopic (FTIR) studies of 

pristine PVA and its 4 wt% Li0.4Sn0.8O nanofiller introduced composite 
film (Figure 1) reveals Infrared (IR) band around 932 cm-1 symbolizing 
the highly planar syndiotactic structure of PVA with a sequential 
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monotonic dependence of optical band gaps on nanofiller content, with 
energies allied to inter band electronic transitions showing a steady 
decrease nanofiller loadings. The observed variation in optical energy 
gap reveals a change in the optical band structure of PVA films upon 
nanofiller intercalations due to formation of polarons in the Li0.4Sn0.8O 
introduced PVA films [19,20].

Conclusion
In summary, highly flexible and visibly transparent PVA 

nanocomposite films were fabricated with lithium doped stannous 
oxide nanofillers by aqueous solvent casting method. The introduced 
nano fillers were found to be well dispersed throughout the PVA matrix 
thereby retaining high visible transparencies (550 nm). In addition, the 
introduced fillers affected a continuous reduction in energies associated 
with inter-band electronic transitions leading to novel opto-electronic 
properties with enhanced UVA shielding efficacies.
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distribution of –OH groups [14]. However, filler introduction leads to 
appreciable changes in the planarity of composite films with a blue shift 
towards 920 cm-1, thereby inducing novel opto-electronic properties in 
contrast to the planar syndiotactic PVA films. The introduced nano 
filler also induces a considerable decline in intensities of –OH stretching 
vibrations, indicating a synergistic interaction between –OH groups of 
PVA matrix, with metallic fractals of Li0.4Sn0.8O nano fillers [15]. The 
Li0.4Sn0.8O nano fillers also affected a continuous decrease in IR band 
intensities in the wave number regimes 1510-1075 cm-1, owing to the 
decoupling of -OH and -CH vibrations. The UV-visible absorbance 
spectrum of PVA/Li0.4Sn0.8O nanocomposite films (Figure 2) reveals 
the effect of nano filler introductions on electronic band structure of 
composite films with a broad shouldered valley around 260-280 nm. In 
contrast, the nanocomposite films display additional UVA absorption 
band around 320-330 nm due to Li0.4Sn0.8O loadings [16].

The electronic spectral studies also support the UVA shielding 
abilities of nanocomposite films, while retaining transparencies in 
visible region (Figure 3). The increased UVA shielding abilities of 
developed films may be attributed to the incorporation of UVA 
absorbing Li0.4Sn0.8O nanofiller (Figure 4). The excellent visible 
transparencies of PVA/Li0.4Sn0.8O nanocomposites may also be 
attributed to extremely smaller filler domains and near matching filler-
matrix refractive indices that reduces the scattering losses [17,18]. 
The optical energy gap is the determinant factor that key establishes 
the portion of sunlight absorbed by a photovoltaic device leading to 
increased photovoltaic conversion efficiencies. The Figure 4 shows a 
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Figure 1: FTIR reflectance spectra of PVA nanocomposite films with (a) 0, (b) 
0.5, (c) 1.0, (d) 2.0, and (e) 4.0 wt % of Li0.2Sn0.8O.
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Figure 2: UV−visible absorbance spectra of PVA nanocomposites with (a) 0, 
(b) 0.5, (c) 1.0, (d) 2.0, and (e) 4.0 wt % of Li0.2Sn0.8O.
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Figure 3: Absorption coefficient vs photon energy of PVA/ Li0.2Sn0.8O 
nanocomposites.
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Figure 4: Tauc’s plot for the determination of direct band gaps.
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