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Editorial
Results in crystal optics obtained during the past fifty years provide 

a solid foundation for the progress of modern photonics. Concepts 
developed in the physics of crystalline solids can potentially be applied 
to the physics of photonic super crystals. While the theory of impurity 
bands and excitons in semiconductor crystals has been constructed 
in 1970-1980, an analogous theory for photonic crystals is yet to be 
completed. Recent experiments and theoretical investigations reveal an 
intense interest for polartonic structures and systems of coupled micro 
resonators [1], whose applications include fabrication of clockworks 
of unprecedented accuracy [2,3] as well as the sources of coherent 
irradiation. There has been a significant advance in the photonics of 
imperfect structures. A number of our recent works have been devoted 
to optical activity of imperfect photonic crystals [4] and to dispersion 
of exciton-like electromagnetic excitations in non-ideal lattices of 
coupled micro resonators [5,6].

Designing and utilization of novel materials for manufacturing of 
the sources of coherent irradiation is currently a vast interdisciplinary 
area, which spans various theoretical and fundamental aspects of laser 
physics, condensed matter physics, nanotechnology, chemistry as well 
information science [7,8]. Physical realization of corresponding devices 
requires the ability to manipulate the group velocity of propagation 
of electromagnetic pulses, which is accomplished by the use of the 
so-called polaritonic crystals. The latter represent a particular type 
of photonic crystals featured by a strong coupling between quantum 
excitations in a medium (excitons) and optical fields.

An example of polaritonic structure can be given by a spatially 
periodic system of coupled microcavities [9]. An interest for optical 
modes in microcavity arrays has been growing lately due to the 
enhancement of optoelectronic devices [10,11]. In this connection the 
defect-based resonators in photonic crystals deserve special attention. 
In [12] it was shown that such resonators can form a strong coupling 
with quantum dots. Alodjants [1] gave a theoretical analysis of the 
formation of quantum solitons coupled to lower dispersion branch 
(LDB) polaritons in a chain of microcavities. The authors suggest that 
such systems can be particularly appealing for the purposes of quantum 
information processing. Microcavity systems can also be employed for 
the construction of highly accurate optical clockworks [2,3]. 

It is worth stressing that the conventional polaritonic model 
[1,5] of the atomic-optical interaction is only applicable to the case of 
ultracold atoms with frozen-out degrees of freedom. The corresponding 
approximation is valid when the number of atoms contained in 
individual cavities is relatively small (N ≤ 104) [13]. Parameter g of the 
strong atomic-optical interaction must satisfy the condition g>>2π/τcoh 

i.e. in each cavity g should much exceed the inverse coherence
time τcoh of the atomic-optical system. Physically, τcoh is the time of 
thermodynamic equilibration of the atomic system, which interacts 
with a quantized field in a polaritonic crystal? The said inequality 
holds at temperatures of the order of several mK, when the spectral 
line broadening is negligible and so there are pure (thermodynamically 
equilibrium) quantum states of the atomic-field system.

The currently rapidly evolving field of endeavor is the photonics of 

imperfect structures. Some of our recent works are devoted to optical 
activity of imperfect photonic crystals [4] as well as to dispersion of 
exciton-like electromagnetic excitations in nonideal (defect-containing) 
arrays of coupled microcavities [5,6]. Introduction of defects provides 
an additional powerful tool for controlling the propagation of 
electromagnetic excitations through photonic structures.

In what follows we use the previously developed concepts of 
photonic structures [5,6,14] to investigate a nonideal polaritonic 
crystal constituted by a topologically ordered assembly of coupled 
microcavities with embedded quantum dots. Quantum dots interact 
with resonator-localized quantized electromagnetic fields and each 
of tunnel-coupled resonators possesses a single optical mode. It is 
assumed that certain portions of quantum dots and cavities are missing, 
which is viewed as the presence of defects. The polariton spectrum of 
the structure and the related quantities of interest (the band gap, the 
effective masses of polaritons as well as their densities of states) are 
investigated as functions of defect concentrations.

We consider a non-ideal polaritonic crystal that is a set of spatially 
ordered microcavities containing atomic clusters or quantum dots. 
Numerical modeling of the dispersion of polaritons in this imperfect 
lattice for different defect concentrations has been performed using 
the virtual crystal approximation [15,16]. Here we assume that the 
spatial distribution of cavities is translation invariant, while the atomic 
subsystem has randomly distributed defects: impurity atomic clusters 
(quantum dots) or vacancies (Figure 1).

Analytical expressions for polariton eigen-frequencies, effective 
masses and group velocities as functions of the quantum dot and 
vacancies concentrations have been obtained. It turns out that even 
with a small number of vacancies in the lattice (one vacancy per one 
thousand cavities) the polariton effective mass may be increased by 
three orders of magnitude [17]. 

In Figure 2a the dispersion bands Ω±(kx, ky, C1
V, C2

V) are plotted for 
an ideal structure (C1

V, C2
V denote defect concentrations of the atomic 

or resonator subsystems correspondently), Figure 2b illustrates their 
transformation under the decrease of parameter g (responsible for 
interaction between the atomic and photonic subsystems) by a factor 
of 10. Figure 2c gives an example of dispersion bands of a nonideal 
structure (C1

V=0.43, C2
V=0.2). 

Our model is primarily based on the virtual crystal approximation, 
which is often employed to examine quasiparticle excitations in 
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sufficiently simple disordered superstructures. More complex 
systems usually require the use of more sophisticated methods such 
as the (one- or multinode) coherent potential approximation [16], 
the averaged T-matrix method and their various modifications. 
The obtained numerical results contribute to our understanding of 
composite polaritonic structures and the prospects of their utilization 
for construction of solid-state devices with controllable propagation of 
electromagnetic waves (Figure 3).
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Figure 1: Schematic of a modeling square one-sublattice array of microcavities. Solid circles denote defect-free cavities with embedded quantum 

dots. Vat-type of defect is a cavity with a missing quantum dot. Vph-type of defect is an empty site with no cavity (and hence with no quantum dot, 

since atomic clusters can only reside at the existent cavities). Defect concentration in the atomic subsystem (i.e. concentration of sites with 

missing quantum dots) C1
V equals to the sum of concentrations of the Vat and Vph-types of defects. Defect concentration in the photonic 

subsystem (concentration of sites with missing cavities) C2
V equals to the Vph-type defect concentration. There holds an obvious 

inequalityC1
VC2

V. 
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Figure 1: Schematic of a modeling square one-sublattice array of microcavities. Solid circles denote defect-free cavities with embedded quantum dots. Vat-type 
of defect is a cavity with a missing quantum dot. Vph-type of defect is an empty site with no cavity (and hence with no quantum dot, since atomic clusters can only 
reside at the existent cavities). Defect concentration in the atomic subsystem (i.e. concentration of sites with missing quantum dots) C1

V equals to the sum of 
concentrations of the Vat and Vph-types of defects. Defect concentration in the photonic subsystem (concentration of sites with missing cavities) C2

V equals to the 
Vph-type defect concentration. There holds an obvious inequality C1

VC2
V.

Figure 2: Polariton energy bands of an ideal (a, b) microcavity array C1
V=C2

V=0) and a defect-containing (c) array (C1
V=0.43, C2

V=0.2). (b) Illustrates 
the narrowed “bottle neck” resulting from the decrease of the parameter g responsible for interaction between the atomic and photonic subsystems by 
a factor of 10.
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Figure 3: Band gap width plotted as a function of defect concentrations in the 
domain of definition C1

VC2
V. 
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