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CD4+ T cells are highly heterogeneous with respect to their 
phenotype, secretion of effector molecules, transcription factors and 
functions. In the periphery, CD4+ T cells can be polarized into distinct 
subsets under the influence of antigen presenting cells and cytokine 
milieu. Recently, Th17 cells that express lineage-specific transcription 
factor RORC (RORgt in mice) and produce cytokines IL-17A and 
IL-17F were identified as distinct lineage of CD4+ T cells [1]. Th17 
cells are important to clear extracellular bacteria and fungi. However, 
when tolerance mechanisms breach, these Th17 cells can also mediate 
inflammation and can play critical role in the pathogenesis of several 
autoimmune diseases. In fact, a large number of autoimmune and 
inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, 
asthma, lupus, psoriasis and others are characterized by an aberrant 
activation of Th17 cells and hyper-expression of Th17 inflammatory 
mediators such as IL-17, IL-21, IL-22, CCL20 and GM-CSF [2-3]. 
Therefore, Th17 cells are one of the potential targets to treat these 
diseases.

Th17 cells provide several opportunities to target them. These 
targets could be both direct and indirect. The indirect targets are those 
factors that mediate Th17 differentiation/expansion. Th17 cells are 
dependent on IL-21 for their differentiation and IL-6, IL-1b and IL-
23 for expansion and stabilization [4-5]. Therefore, interference with 
these cytokines either by neutralizing monoclonal antibodies or by 
soluble receptors can inhibit Th17 generation. Important point is that 
such strategies are already explored in autoimmune patients. A human 
monoclonal antibody ustekinumab that targets p40 subunit of IL-12/
IL-23 is a promising therapeutic candidate for psoriasis and Crohn’s 
disease [6-7]. 

Direct therapeutic targets are those that are intrinsic to Th17 cells 
such as Th17-protoype cytokine IL-17 and Th17-specific transcription 
factors RORC and STAT-3. Although, Th17 cells also secrete other 
inflammatory mediators such as IL-21, IL-22, CCL20 and GM-CSF, 
they are not specific for Th17 cells as other immune or non-immune 
cells also produce these cytokines/chemokines. For the moment, two 
independent approaches have been explored to target IL-17: to inhibit 
IL-17 transcription or to neutralize this cytokine by monoclonal 
antibodies. Experimental models show that 1,25-dihydroxyvitamin D3 
can inhibit transcription of IL-17 with a concomitant amelioration of 
experimental autoimmune encephalomyelitis (EAE) [8]. Of interest, 
two anti-IL-17 neutralizing humanized monoclonal antibodies AIN457 
and LY2439821 have shown promise in patients with rheumatoid 
arthritis, psoriasis and uveitis [9-10]. Pioglitazone, a nuclear receptor 
peroxisome proliferator-activated receptor gamma (PPARg) agonist; 
simvastatin, a cholesterol-lowering agent; and cardiac glycoside 
digoxin inhibit Th17 generation by interfering with RORgt/RORC 
[11-13]. Moreover, molecules such as zinc, platelet-activating factor 
receptor antagonist PCA-4248 and leukemia inhibitory factor block 
phosphorylation of STAT3 and hence are effective inhibitors of Th17 
cells in vitro and in vivo [14-16]. 

All these reports point out that identification of Th17 targeting 
therapies is an active area of research and of intense clinical investigation. 
However, do we need therapies that specifically target Th17 cells for 
all the pathological conditions? As per current understandings of 
Th17 biology, we may not need Th17-specific therapies for most of the 
diseases that are associated with an aberrant activation of Th17 cells. 
Importantly, plasticity of Th17 cells and their instability pose dilemma 
of to target these cells specifically or to use broad-spectrum therapies. 
The experimental models and analysis of T cells from patients 
with inflammatory conditions have demonstrated that under acute 
inflammatory conditions, Th17 cells are stable while under chronic 
inflammatory conditions, they tend to acquire the characteristics of 
other effector cells such as Th1, Th2 or even regulatory T cells (Tregs) 
[17-20]. Thus, in EAE, Th17 cells that migrate to central nervous 
system tend to loose IL-17 expression and acquire IFN-g [20]. This 
report although confirms previous notion that IFN-g-producing CD4+

T cells are pathogenic in EAE, these IFN-g-producing T cells were not 
generated because of differentiation of naïve CD4+ T populations into 
Th1 cells. Rather, IFN-g-producing T cells were originated from Th17 
cells that have previously produced IL-17. In humans, CD4+ T cells that 
are double positive for IFN-g and IL-17 is a common feature during 
in vitro differentiation or expansion of Th17 cells [21-22]. In asthma 
patients, distinct populations of circulating memory CD4+ T cells that 
co-express IL-17 and IL-4 have been identified [23]. Therefore, for 
chronic inflammatory conditions, therapies that specifically target Th17 
cells may not provide expected benefits.

In addition to plasticity that is inherent to Th17 cells, it is still 
unclear whether human autoimmune disorders including rheumatoid 
arthritis and psoriasis are universally Th1-mediated or Th17-mediated. 
Several reports suggest that both Th1 and Th17 cells are involved in 
the pathogenesis of rheumatoid arthritis while, skin lesions in psoriasis 
are characterized by the infiltration of distinct populations of highly 
differentiated Th1 and Th17 cells [17,24,25]. Similarly, all three 
major CD4+ T subsets Th1, Th2 and Th17 cells are implicated in the 
pathogenesis of lupus [26,27]. However, in view of plasticity of Th17 
cells, it remains to be determined if mixed phenotype of CD4+ T cells 
in these conditions is due to discrete T cell subsets that are polarized 
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independently or due to acquisition of phenotype of other T cells by the 
infiltrating Th17 cells. 

In view of the instability of Th17 cells that can acquire phenotype of 
either Th1/Th2 cells under chronic inflammatory conditions, and mixed 
phenotype of CD4+ T cells in many autoimmune and inflammatory 
conditions, Th17-specific targeting may not provide much benefit. 
Therefore, therapies that have broad specificities (Th17-Th1 or Th17-
Th2 for example) would be ideal. In fact, several therapeutic molecules 
that are explored for inhibition of Th17 cells also inhibit other 
pathogenic cells and can be associated with reciprocal up-regulation or 
expansion of Tregs. These therapies include ustekinumab that inhibit 
both Th1 and Th17 cell populations by inhibiting IL-12 and IL-23 [6,7]; 
intravenous immunoglobulin (a therapeutic preparation of pooled 
normal IgG obtained from the plasma pool of several thousand healthy 
donors) that suppresses Th17 and Th1 while reciprocally enhancing 
Treg expansion [22,28-29]; N-acetylglucosamine [30]; and platelet-
activating factor receptor antagonist PCA-4248 [15]. Among them, it 
is noteworthy to mention that IVIg is a proven therapeutic molecule in 
a wide-range of autoimmune diseases while ustekinumab has already 
shown promise in initial clinical trials. Remaining two molecules have 
provided encouraging results in experimental models and hence are 
possible candidates to test in the patients. 
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