

Plant-Based Biomanufacturing: Sustainable Protein Production Advancements

Luis F. Ortega*

Department of Chemical and Bioprocess Engineering, University of Chile, Santiago, Chile

Introduction

Plant-based expression systems are emerging as a sustainable and scalable platform for the production of a wide array of recombinant proteins, encompassing pharmaceuticals and industrial enzymes. The bioprocessing of these systems requires meticulous optimization of various stages, including gene expression, cell cultivation, protein extraction, and subsequent purification steps. Significant advancements in genetic engineering techniques and innovative bioreactor designs are collectively contributing to enhanced yields and improved product quality, thereby solidifying plants as a competitive and viable choice for biomanufacturing endeavors.

Addressing the downstream processing of plant-made proteins is a critical factor that directly influences their commercial viability. Ongoing refinement of purification techniques, such as aqueous two-phase systems and affinity chromatography, aims to significantly improve both the recovery rates and the overall purity of the target proteins. A deep understanding of the intricate matrix inherent in plant tissues, coupled with the development of robust and efficient purification strategies, is paramount to overcoming the persistent challenges in this area.

Cell suspension cultures derived from transgenic plants provide a highly controlled environment conducive to bioprocessing. This controlled setting allows for high-density cultivation and facilitates easier downstream manipulation of the expressed proteins. The optimization of media composition and precise control of bioreactor conditions are essential elements for maximizing biomass accumulation and achieving high recombinant protein yields within these sophisticated systems.

The strategic utilization of inducible promoter systems within plant-based expression platforms is crucial for precise control over protein synthesis. This control is vital for preventing potential toxicity to the host plant cells and for synchronizing protein production with desired bioprocessing stages. Recent research efforts have concentrated on the design of highly efficient and tightly regulated inducible promoters, with the overarching goal of achieving superior protein yields and optimizing overall bioprocessing outcomes.

Metabolic engineering of plant hosts represents a powerful approach to significantly enhance the production of complex recombinant proteins, including antibodies and vaccines. This involves intricate strategies such as optimizing precursor supply pathways, improving protein folding and assembly mechanisms within the plant cells, and actively reducing the formation of undesirable byproducts, all of which contribute to a more efficient and streamlined bioprocessing workflow.

The successful scale-up of plant-based bioprocessing, transitioning from laboratory-scale experiments to industrial-level production, presents a unique set of challenges. Development is ongoing for advanced cultivation systems, includ-

ing photobioreactors, designed to achieve higher biomass densities and protein yields. This necessitates careful consideration and precise control of essential environmental factors such as light intensity, CO₂ levels, and nutrient supply.

Purification of recombinant proteins from plant tissues can be a complex undertaking, often complicated by the presence of endogenous plant proteases and various secondary metabolites. The development of rapid, efficient extraction methods, in conjunction with highly selective purification techniques, is indispensable for obtaining recombinant proteins of high purity suitable for therapeutic or industrial applications.

The utilization of genetically modified plants as sophisticated bioreactors for the production of vaccines and therapeutic proteins is a field experiencing rapid and significant evolution. Current research endeavors are focused on enhancing key product attributes, including stability and immunogenicity, while also prioritizing safety considerations. Concurrently, significant effort is directed towards optimizing bioprocessing workflows to ensure cost-effectiveness and enable rapid deployment of these vital medical products.

Biotinylation of recombinant proteins produced within plant expression systems can markedly improve their detectability and facilitate purification processes. This is particularly advantageous for applications in diagnostics and fundamental research. The development of site-specific biotinylation strategies is an active area of investigation, aiming to enhance the efficiency of this labeling process while minimizing any potential interference with the protein's intended biological function.

The use of protein bodies within seeds as a specialized platform for recombinant protein production offers distinct advantages. These include the potential for very high accumulation levels of the target proteins and an inherent protective mechanism against degradation by proteases. Key areas of ongoing research focus on optimizing the targeting of proteins to these intracellular storage compartments and developing efficient methods for their subsequent extraction and recovery.

Description

The landscape of biopharmaceutical production is being reshaped by the advent of plant-based expression systems, which offer a sustainable and scalable modality for generating recombinant proteins, including vital pharmaceuticals and industrial enzymes. The bioprocessing pipeline for these systems encompasses critical steps such as the optimization of gene expression, meticulous cell cultivation, efficient protein extraction, and rigorous purification. Substantial progress in genetic engineering and innovative bioreactor design is continuously enhancing both yields and product quality, positioning plants as a highly competitive option

for modern biomanufacturing.

A cornerstone of the commercial viability of plant-made proteins lies in the efficiency of their downstream processing. Techniques such as aqueous two-phase systems and affinity chromatography are undergoing continuous refinement to boost recovery rates and purity levels. Effectively navigating the complexities of the plant tissue matrix and devising robust purification strategies are crucial for overcoming the inherent challenges in this domain.

Plant cell suspension cultures, derived from transgenic plant material, provide a highly controlled milieu for bioprocessing operations. This controlled environment facilitates high-density cultivation and simplifies downstream manipulation. Achieving maximal biomass accumulation and high recombinant protein yields hinges on the precise optimization of media composition and careful management of bioreactor conditions.

In plant-based expression, the implementation of inducible promoter systems is paramount for regulating protein synthesis and preventing cellular toxicity. Advances in this area focus on engineering promoters that are both highly efficient and tightly controlled, aiming to maximize protein yields and improve the overall efficacy of bioprocessing protocols.

Metabolic engineering plays a pivotal role in enhancing the production of complex recombinant proteins, such as antibodies and vaccines, in plant hosts. Strategies involve fine-tuning precursor availability, improving protein folding and assembly, and minimizing the generation of unwanted byproducts, thereby streamlining the bioprocessing pathway.

Scaling up plant-based bioprocessing from the laboratory to an industrial level presents significant hurdles. Ongoing research and development are focused on advanced cultivation systems, like photobioreactors, to achieve higher biomass densities and protein yields. This necessitates meticulous control over factors such as light, CO₂, and nutrient delivery.

Purifying recombinant proteins from plant sources can be intricate due to the presence of endogenous proteases and secondary metabolites. The development of rapid and efficient extraction methods, coupled with selective purification techniques, is essential for isolating high-purity products.

The use of genetically modified plants as bioreactors for producing vaccines and therapeutics is a rapidly advancing frontier. Research priorities include enhancing product stability and immunogenicity, alongside optimizing bioprocessing workflows for cost-effectiveness and rapid deployment capabilities.

Biotinylation of recombinant proteins within plant expression systems can improve their detection and simplify purification, particularly for diagnostic and research applications. Efforts are underway to develop site-specific biotinylation methods that increase efficiency and minimize impact on protein function.

The utilization of protein bodies in seeds as a production system for recombinant proteins offers advantages such as high accumulation levels and intrinsic protease resistance. Key research efforts are directed towards optimizing protein targeting to protein bodies and developing efficient extraction protocols.

Conclusion

Plant-based expression systems offer a sustainable and scalable method for producing recombinant proteins, including pharmaceuticals and industrial enzymes. Bioprocessing these systems involves optimizing gene expression, cultivation, extraction, and purification. Advances in genetic engineering and bioreactor design are improving yields and product quality, making plants competitive for biomanu-

facturing. Efficient downstream processing is crucial, with techniques like aqueous two-phase systems and affinity chromatography being refined. Cell suspension cultures provide a controlled environment for high-density cultivation and easier downstream manipulation. Inducible promoter systems are vital for controlling protein synthesis and preventing toxicity. Metabolic engineering can enhance the production of complex proteins by optimizing cellular pathways. Scaling up plant-based bioprocessing presents challenges, leading to the development of advanced cultivation systems. Purification from plant tissues is complicated by endogenous proteases and metabolites, requiring efficient extraction and selective purification. Genetically modified plants are being developed as bioreactors for vaccines and therapeutics, focusing on stability, immunogenicity, and cost-effectiveness. Biotinylation can aid detection and purification, with site-specific strategies being explored. Protein bodies in seeds offer a platform for high-level production due to inherent protease resistance.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Caroline A. P. de Lima, Alvaro A. O. de Menezes, Ana Paula C. T. de Assis. "Advances in plant-based expression systems for biopharmaceutical production." *Biotechnol Adv* 44 (2023):100406.
2. Marta G. Estêvão, Ana M. C. P. Rodrigues, Ana Sofia C. Oliveira. "Downstream processing of plant-made pharmaceuticals." *Curr Opin Biotechnol* 74 (2022):125-131.
3. Hao-Yi Chen, Jian-Ping Xu, Shu-Juan He. "Plant cell suspension cultures for the production of recombinant proteins." *J Plant Biotechnol* 48 (2021):194-204.
4. Maria E. L. Ferreira, Pedro L. M. Santos, Carla M. S. Vieira. "Inducible expression systems in plants for high-level recombinant protein production." *Plant Cell Rep* 42 (2023):1083-1095.
5. Sofia M. G. Ribeiro, Joana P. S. Almeida, Ricardo A. S. Fernandes. "Metabolic engineering for enhanced production of recombinant proteins in plants." *Trends Biotechnol* 40 (2022):474-485.
6. Ana R. P. Fonseca, Jorge M. S. Santos, Liliana S. Rodrigues. "Scale-up strategies for plant-based biopharmaceutical production." *Eng Life Sci* 23 (2023):1-13.
7. Cristina P. M. Martins, Daniela S. G. Pereira, Ricardo A. J. Fernandes. "Challenges and advancements in the purification of plant-made recombinant proteins." *Biotechnol Lett* 44 (2022):681-693.
8. Ana M. L. Coelho, Pedro A. R. Esteves, Sofia C. P. Martins. "Plant-made vaccines and therapeutics: Progress and prospects." *Expert Rev Vaccines* 20 (2021):1387-1399.
9. Paula R. S. Almeida, Ricardo M. G. Carvalho, Ana L. P. Silva. "Site-specific biotinylation of recombinant proteins in plants." *J Biotechnol* 360 (2023):1-9.
10. Ana F. M. Santos, Pedro A. S. Costa, Sofia R. P. Martins. "Protein bodies in seeds: A platform for bioproduction of recombinant proteins." *Plant Sci* 315 (2022):111229.

How to cite this article: Ortega, Luis F.. "Plant-Based Biomanufacturing: Sustainable Protein Production Advancements." *J Bioprocess Biotech* 15 (2025):696.

***Address for Correspondence:** Luis, F. Ortega, Department of Chemical and Bioprocess Engineering, University of Chile, Santiago, Chile, E-mail: lortega@ucile.cl

Copyright: © 2025 Ortega F. Luis This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Sep-2025, Manuscript No. jbpbt-25-178520; **Editor assigned:** 03-Sep-2025, PreQC No. P-178520; **Reviewed:** 17-Sep-2025, QC No. Q-178520; **Revised:** 22-Sep-2025, Manuscript No. R-178520; **Published:** 29-Sep-2025, DOI: 10.37421/2155-9821.2025.15.696
