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Abstract

In diabetes clinical trials, hypoglycemia can be captured. Negative binomial regression is emerging as a standard
method for analyzing hypoglycemic events by considering overdispersion. However, in negative binomial regression
for hypoglycemic events, variability of the subjects lost to follow up due to dropout is adjusted through an offset
parameter, which assumes that dropout is missing completely at random and constant hypoglycemia rate over time.
This assumption is vulnerable because dropout may be due to the excessive observed hypoglycemic events and the
hypoglycemic event rate may change over time. In addition, the traditional way of using negative binomial regression
to analyze hypoglycemic events only compares the counts of hypoglycemic events during a specified period. However,
researchers may be interested in comparing hypoglycemic event rates between treatment groups at different time
periods to understand the trend over time. Fitting a negative binomial model for each time period ignoring data from
other periods may decrease testing power and introduce bias if the assumption of missing completely at random does
not hold. We propose piecewise negative binomial regression to incorporate multiple time periods in one model through
a generalized linear mixed-effect model. Due to clinical interest, we considered multiple weighting methods to estimate
the overall relative rate of hypoglycemia over multiple periods between treatments. Simulations showed that piecewise
negative binomial regression performed better than the traditional negative binomial regression in preserving Type |
error. As an illustration, piecewise negative binomial regression was implemented in analyzing real data from a Type 2
diabetes clinical trial.

total number of events during the period of interest for each subject.
Poisson and negative binomial (NB) regressions are two commonly
used generalized linear models for count data [2,3]. Zero-inflated
Poisson and zero-inflated NB regressions were also proposed to
account for excessive zero counts [4]. Recent research demonstrated
that NB regression with additional Pearson overdispersion correction
and the variance-covariance of the parameters estimated through
“sandwich” estimation performs the best among all the options for
hypoglycemia data without missing values [5]. However, according
to clinical interest, researchers may be interested in comparing
hypoglycemic event rates between treatment groups at different time
periods. Fitting an NB regression model at each time period separately
is not optimal because the events information outside that time period
is lost. Furthermore, if missing data occur under the mechanism of
MAR, this method may lead to biased estimates when hypoglycemia
rates are not constant over time [6]. The objective of this research is to
identify a simple and effective model to analyze hypoglycemic events
data in diabetes clinical trials with MAR. We propose to use piecewise
negative binomial (PWNB) regression, which fits NB regression models
for the count data in time intervals through a generalized linear mixed-
effect model, where the time intervals are generally formed naturally
based on the clinical visits or combination of multiple clinical visits.
The within-subject correlation between the counts in different time
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Introduction

Diabetes is a chronic disease characterized by high blood glucose.
Treatment for patients with Type 2 diabetes mellitus (T2DM) includes
diet and exercise, oral antidiabetes agents, and injections such as
insulin. The only treatment for Type 1 diabetes mellitus (TIDM) is
insulin. Hypoglycemic events are common side effects of antidiabetic
agents, especially insulin. It is important to develop antidiabetes agents
that lead to less hypoglycemic events and better glycemic control.
Therefore, itis of practical interest to use appropriate statistical methods
to analyze hypoglycemic events. In clinical trials, hypoglycemic events
are captured as recurrent events by patients’ self-reporting. If a patient
drops out of the study, hypoglycemic events and other measurements
will not be recorded. As a result, missing hypoglycemia data is a
common problem in diabetes clinical trials. Little and Rubin [1] defined
three classes of missing data:

o Missing completely at random (MCAR): whether an
observation is missing does not depend on the observed nor
the unobserved values;

o Missing at random (MAR): the probability of a missing
observation depends only on the observed values;
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« Missing not at random (MNAR): the probability of a missing
observation depends on the unobserved values.

Throughout, MAR is assumed in this research for data generation
and statistical analysis of hypoglycemic events. In addition, because
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missing hypoglycemia is primarily due to dropout, we assume a
monotone pattern of missing throughout, meaning that if a data point
is missing at a specific time, the observations for this subject after that
time point are also missing.

Hypoglycemic events can be treated as a count variable with the
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intervals can be modeled through the generalized linear mixed-effect
model framework. In this paper, PWNB regression will be compared
with NB regression through Monte Carlo simulations and real clinical 1 )
data analyses. T+ 0 Y .
L 1 K
P(Y; =y, 0) = £ [1+ : ] [l+ J .Y =0,12... 1)
Methods K Kt

In this Method, we briefly describe two models: NB regression and
PWNB regression. In the first model, the total count of hypoglycemia
for each subject during the follow-up is summarized, and analyzed
by an NB regression model. For the second model, the count of
hypoglycemic events at each time interval is calculated and used for
fitting longitudinal NB regression. Next, we provide the following
notations:

Let N denote the total number of subjects, D, represent the
j™ hypoglycemic event time since randomization, and C, be the

censoring time, which is the minimum of dropout time and follow-
up time for the i subject. The total duration can be partitioned
into m intervals by prespecified time points 0=n<n<-<n
<n,, where n _is the maximum follow-up time. Note that the
time intervals are determined based on the natural clinical visits
and clinical interest. Assume the unit for all variables regarding

time is day. Let Y, denote the number of events at time interval

[7,.m,) for subject i If 7717,,<C‘.,x.p:zjl(np,lgD,.j<;7p)1(D,.j<q),and

Yp is missing if 7,,>C, P=12...,

i

m. Thus, the repeated count
T
numbers are represented by ”;*:(”,-1~)’,z»--»>”,n~) , and the offset is

T
C-n. .
5 =|log-L—To T "o Jog 2= >~ .,10g¢  where n; <m s

! 30 30 77 30

*
defined such that censor occurs at the 1 th time interval. The total

n;

number of events for the i" subject is calculated byY; = ZY,[, with the

. p=1
mln(nin, ,C,-)

corresponding offset §; = log . The denominator “30” is

used in the offset parameter to estimate the event rate per 30 days. If
the event rate per year is to be estimated, the denominator of “365”
may be used.

The dependent variable Y, with its offset §, will be used for NB
regression, and Y, * with its offset 5 will be used for PWNB regression.
Let X, denote a vector of 1ndependent variables, such as baseline
covarlates, treatment indicator, among others. Note that X, also
includes the period variable noted by categorical values {L 2, } for
PWNB regression.

Negative binomial regression

NB regression is used to model count responses, usually for
overdispersed count data where the conditional variance exceeds the
conditional mean. It can be considered as a generalization of Poisson
regression because it has the same mean structure but an extra parameter
to model the overdispersion. For instance, when subject heterogeneity
in the event rate is considered, a random effect é, will be included,
thus conditional on ¢, E(YIX;, ¢)=Var(¥IX,, ¢)=4¢ exv(ﬁTX,v),
where a log link function is used to connect the mean and the linear
regression of the covariate X, If ¢, follows a gamma distribution with
¢,~Gamma(x k), the marglnal count observation for the i subject, Y,
follows an NB distribution defined by:

1
yi'lre)
K

Where E(YIX,)=u = eXP(/J’TXi) and Var(Yi|Xl~) =4 +k,u,-2. The
full-likelihood approach is used to estimate parameters. Recently, Luo
and Qu [5] proposed that using “sandwich” estimation to calculate
the covariance matrix of the parameter estimates together with
Pearson overdispersion correction performs the most robust to model
misspecification and improves the estimation efficiency by adjusting
for baseline variables [6].

Piecewise negative binomial regression

PWNB regression is an extension of simple NB regression into
longitudinal count data by generalized linear mixed-effect model.
The normally distributed random effect is incorporated to capture
the correlation of multiple counts within subjects in the analysis to
improve the estimation. Following the notations in negative binomial
regression, the response for the i subject is ¥; ,i=1,2,..,N,and the
PWNB regression model with random intercept can be written by:

1og(luipg |7i):ﬁpg+7/i 2

Where 4, is the true mean event rate for subject i in treatment

g (g=0 for the control group and g=1 for the treatment group) at time

interval p, and 8, is a scalar coefficient indicating the population-
average mean event rate in treatment g at time interval p, and the
random effect 7, ~N(0,crf). Of note is that we consider the simplest
and commonly used form with random intercept only, but more
complicated within-subject correlation can be modeled through the
residuals in generalized linear model framework if necessary. Since
the generalized estimating equations method may produce biased
estimators under MAR assumption [7], we use pseudo-likelihood
based generalized linear mixed models in estimating in the parameters
in the PWNB model [8]. The “Sandwich” method is used for variance
estimation. Newton-Raphson optimization technique with ridging
is used to improve the likelihood of convergence [9]. Appendix A.l
and Appendix A.2 provide sample SAS codes. The relative rate of the
treatment group over control group in each time interval p is:

Cp ZCXp(ﬂpl _ﬂpo)
which can be estimated directly based on the estimated parameters.
Estimate of the overall relative rate: There are three possible
quantities for the overall relative rate, which will be discussed next.

Given a constant relative rate over time, the unweighted overall relative
rate is defined by:
G =exp(B.1—By) (3)
- 1 m . .
where B = ;szl Bre- Because the time intervals may not be even, a

weighted relative rate can be constructed as:

Cz = exp(z::1 Wpﬂp] _Z::1 L) pO)’ (4)

with w, = (np *Tlp—1)/ Mm [10]. However, the interest of estimation
may be the relative rate of the overall number of hypoglycemic events
during the entire period. We can use an artificial example to illustrate
the difference between the two quantities and the relative rate of the
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overall events. Assume the entire period is divided into two equal
intervals: in the first interval, there are 20 and 10 events for treatment
groups 0 and 1, respectively; and in the second interval, there are 80 and
90 events for treatment group 0 and 1, respectively. The overall event
rate ratio is 1, while the above two quantities (3) and (4) give a ratio of

o 10810410290 10g20+10g80 _ (10 90 2 _ o5, Therefore, we
P 2 2 2080 e

define a third relative rate withd =n -7, as:

D BB+ 7] Y dyesp(f 0y 2) D dyexp(By)

=S = = )
2 dElexp(Bo 1] D d,exp(Br+ 07 /2) D d,exp(Byo)

The variance for (:3 is estimated by the delta method:

— oy [ G(B) | (8

Var(C;): L Var( ) L (6)

op op
with
e wontiny HoRlB) S dewtdy)  ~den(fu) 57 0t

ay(h)
B z:,‘:‘d/'cw(’é”“) ' z’/’::‘d”CXP(/}pU) (z:::‘d,,cxp(ﬁ,,u))z

(22 gt

The 100(1-a)% confidence interval (CI) for the €3 is constructed
using a log-transformation based on two reasons. First, the rate ratio
estimate is a positive number; second, the log-link function is used in
the PWNB model. For log(C,), its 100(1-a)% CI can be given by:

Var(Ey o (1 ,2]

( 3) 2 (7)
G

where @' is the inverse function of the cumulative distribution

function (CDF) of the standard normal distribution. Thus, the 100(1-

a)% CI for &3 is inversely calculated by an exponential transformation
of the above CI in (7).

log(é)i

Simulation

Simulation studies are conducted to evaluate the performance of
NB and PWNB models described in Methods. For each scenario, 5,000
random samples are generated and the corresponding parameters are
estimated for each sample. Summary statistics based on the estimates
from the 5,000 simulation samples are provided for assessing the
performance of the two models.

Simulation setting

Wegeneraterecurrenthypoglycemiceventsthrough threeprocesses:
Weibull process, mixed Poisson process, and mixed inhomogeneous
Poisson process [11]. Data generated from mixed Poisson process with
gamma distribution will follow a negative binomial distribution, but
if dropouts/missing values exist, this fact does not hold under MAR
assumption. For each scenario, each treatment group includes 150
subjects and each subject will be followed up to 52 weeks.

The first generating process is Weibull, which considers the relative
event rate may change over time, but assume there is no correlation
among observations within a subject. The probability density function

(PDF) for interevent time ¢, is lyt};flexp(—ltiyj) and CDF is
I—exp(—At},). t, is obtained by:

Iy
tij :{_ loiu[ } " NUI’llf(O,l) (8)

Three possible options for the shape parameter y include the
following: 0<y<1 indicates the event rate decreases over time; y=1
indicates the event rate stays constant over time, which leads to the
Poisson process; y>1 indicates the event rate increases over time. We
set p=0.5 for the event rate decreasing over time in an L-shape.

The second generating process is mixed Poisson, which allows for
a random effect called “frailty” to be incorporated into the Poisson
process to model the within-subject correlation. Conditioning on the
frailty, the events are independent from each other within subject. The
PDF for t; is Mi,exp(—kmij) where ¢ ~Gamma(x',x) with mean 1 and
variance K. Given ¢, the time ¢, can be simulated from independent
realizations of an exponential distribution with the rate A¢;:

log u;
t; =— ~u; ~ Unif (0,1 9)
For the above generating processes, we set the parameter X to be
\.=0.4 for the control group, and A for the treatment group with the

relative rate ¢ =2 .
ﬂC
The third generating process is mixed inhomogeneous Poisson,

which not only incorporates the frailty, but also allows for non-constant
event rate over time. The PDF for £, is:

2 () dexp (=2 () ity ) (10)
where ¢i~Gamma(K'1,K) defined similarly in the mixed Poisson
process. Here, we investigate two scenarios with piecewise event rate
function. As noted in Piecewise negative binomial regression, the

group indicator for the treatment group is g=1, otherwise, g=0 for the
control group:

(o, + ot ) exp(Bg), 1; <12 a, =0.15,¢, =0.0208, 8 =log({)

At)= , where (11)
S, exp(Bg), 1;>12 9,=04

a, +ayt;) ex , 1, <12 =0.15,a, =0.0208, 8 =1

)v(t,/)= ( 0 1 /) p(ﬂg) i , whe 20 Q ﬁ Og(g) (12)

(8, + St exp(Bg), t;>12 8,=0.52,6,=-0.01

Therefore, conditioning on ¢, the event rate initially increases in the
first 12 weeks, then stays stable (11) or declines (12) after 12 weeks.
There are two popular methods for generating the inhomogeneous
Poisson process: the inverse transform method [12] and the thinning
method [13]. For easy manipulation and flexible computation, we use
the latter.

To generate data for that MAR, we assume that probability of
dropout at time n_depends on the event rate prior to time n . The
dropout probability is relative to the events that occur in the p* interval:

Pr(subjectidrop out atnp) =flay+ (Yip /(np /P )), p=12,....om
Where f(x)=1/(1+exp(-x)). We choose a=-0.6 and a =5 to generate
the dropout rate ranging from 15% to 30%.

Up to this point, all simulation scenarios above assume constant
relative rate over time. To investigate three estimates of overall relative
rate defined in Piecewise negative binomial regression for PWNB
regression, in addition to evaluating the performance under scenarios
with constant relative rate over time mentioned previously, three
new scenarios with non-constant relative rates over time are added to
evaluate the performance of the three estimates defined in Estimate of
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the overall relative rate. The new scenarios generate data from mixed
inhomogeneous Poisson process (10) with k=1, and the details of the
calculations are provided in Appendix A.3:

1. “Increase+Stable™

a,expl(Bt; + By)gl, t; <12 ,=08,8=01,8=-25
ﬂ(.,-:{ ‘ <12 {a A=0Lp =25

S,exp(f,g), 1;>12 9,=0.5,8,=-0.83

The relative rate above increases over time before 12 weeks and

remains constant after 12 weeks. The three quantities for the relative
rate are calculated as follows: £ =0.231; {, =0.341; {; = 0.346.

2. “Increase+Decrease”™

a,expl(Bt, + B8], 1; <12 a,=08,8=0.1,8=-25
At;) = , where § (14)
S exp[(ﬂztﬁ +p)gls ;> 12 6,=0.5,8,=-0.1,8,=037

The relative rate above increases over time before 12 weeks and
tends to decrease after 12 weeks. The three quantities for the relative
rate are calculated as follows: £, =0.098; £, =0.073; {; = 0.124.

3. “Decrease+Stable”:

A )= ayexpl(Bit; + By)gl, ;<12 N ,=0.8,8=-0.1,5=-0.1
70 8,exp(Bg), 1,>12 ’ 5,=05,8 =-0.83 (15)

The relative rate above decreases over time before 12 weeks and
remains constant after 12 weeks. The three quantities for the relative
rate are calculated as follows: §; =0.514; £, = 0.449; {; = 0.466.

For all simulations, K=5,000 Monte Carlo samples with the size of
300 (150 per group) are simulated for each scenario. The bias, Monte
Carlo standard error (MCSE), mean of the estimated standard errors
(SEs), mean squared error (MSE), and 95% coverage probability
(CP) for log scale of the relative rate are reported and compared

between NB and PWNB regressions, where the bias is calculated by

%Z(ﬁ_bg( C)) MCSE given by {Kl_li(ﬁﬂ)z] ; mean of

i=1 i-1
estimated SEs provided by 1 iSE ( ﬂ) with SE ( ﬁ) based on the model;
K

i=1

. 1 & - 2 )
MSE obtained by < ; ( L—log (Q)) .PWNB regression, the 52-week
duration is divided into four intervals: 0-2, 2-12, 12-26, 26-52 week to
mimic the intervals of interest for several real clinical trials. In addition,
the bias, MCSE, mean of the estimated SEs, MSE, and 95% CP for the
overall relative rate over all periods are compared among the three
methods defined in Estimate of the overall relative rate.

Simulation results

Negative binomial vs. piecewise negative binomial regressions:
Tables 1 and 2 compare the performance of the two statistical models
(NB versus PWNB regression) with respect to the log scale of relative
rate. For both Tables 1 and 2, the PWNB model assuming a constant
relative rate over time was used in estimating the overall relative rate
(i.e., the interaction between treatment and time interval was not
included in the estimation model). Table 1 presents the results under
the null hypothesis that there is no treatment difference. The biases
from all estimates are small and comparable between the two models.

Table 1: Comparison of NB and PWNB regressions through bias, MCSE, mean
of SEs, and MSE of log(risk rate) and 95% CI coverage probability (CP) based on
5,000 Monte Carlo simulations (true relative rate {=1.0 for treatment versus control
groups).

Simulation Model « Method Bias MCSE Meanof SEs MSE CP (%)
Weibull 0 NB | 0.0004 0.128 0.105 0.016  89.1
PWNB | 0.0002 0.087 0.080 0.008  94.9
Mixed Poisson 1 NBM | 0.001 0.135 0.116 0.018 90.8
PWNB | 0.001  0.143 0.143 0.020 95.4
Mixed Poisson 2 NB 0.002  0.185 0.157 0.034 904
PWNB | 0.001 0.198 0.198 0.039 95.2
Increase+Stable 1/2/ NBM | 0.001  0.081 0.078 0.007  94.6
PWNB | 0.001 0.094 0.095 0.008  95.5
Increase+Stable 1 NB | -0.003 0.109 0.102 0.012 94.2
PWNB | -0.005 0.137 0.138 0.019  95.0
Increase+Decrease 1/2 NB 0.004 0.117 0.109 0.014 | 93.2
PWNB | 0.003 0.107 0.108 0.011  95.1
Increase+Decrease 1 NB -0.003 | 0.157 0.140 0.025 924
PWNB | -0.002 0.153 0.152 0.023 94.8

Abbreviations: NB=Negative binomial; PWNB=Piecewise negative binomial;
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error;
CP=95% CI coverage probability; k=Overdispersion parameter

Table 2: Comparison of NB and PWNB regressions through bias, MCSE, mean
of SEs, and MSE of log(risk rate) and 95% CI coverage probability (CP) based on
5,000 Monte Carlo simulations (true relative rate £=0.6 for treatment versus control
groups).

Simulation Model « Method Bias |MCSE Mean of SEs MSE CP (%)
Weibull 0 NB -0.389 | 0.131 0.108 0.169 88.7
PWNB  -0.234 | 0.093 0.091 0.063 94.5
Mixed Poisson 1 NBM | 0.002 | 0.134 0.116 0.018  92.0
PWNB 0.010 | 0.131 0.130 0.017  94.6
Mixed Poisson 2 NB -0.002 | 0.184 0.157 0.034 914
PWNB 0.015 | 0.175 0.173 0.031 943
Increase+Stable % NBM | 0.040 0.083 0.082 0.008  92.0
PWNB  0.010 | 0.092 0.09 0.008  95.3
Increase+Stable 1 NB 0.064  0.113 0.107 0.017  89.3
PWNB 0.015 | 0.135 0.134 0.018  94.8
Increase+Decrease | /2 NB -0.114 | 0.119 0.111 0.027  89.5
PWNB -0.059 | 0.111 0.111 0.016 94.4
Increase+Decrease 1 NB -0.112 | 0.162 0.145 0.038  89.2
PWNB -0.048 | 0.153 0.154 0.026  93.9

Abbreviations: NB=Negative binomial; PWNB=Piecewise negative binomial;
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error;
CP=95% CI coverage probability; k=Overdispersion parameter

PWNB regression preserves 95% CP, while NB regression inflates Type
I error to a substantial degree, leading to smaller CP in all scenarios.
PWNB regression has a smaller MSE for Weibull process and a larger
MSE for mixed inhomogeneous Poisson process with “increase then
decrease” risk rate, compared with NB regression. For NB regression,
the mean of SEs is always smaller than the MCSE, which is probably
why Type I error is inflated.

Table 2 shows the results for the case with true relative rate of 0.6.
The 95% CP based on NB regression is lower than normal level for all
scenarios, while PWNB regression preserves the appropriate coverage
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Table 3: Comparison of different estimates of the overall relative rate through bias,
MCSE, mean of SEs, and MSE of relative rate and 95% CI coverage probability
(CP) based on 5,000 Monte Carlo simulations (true relative rate £=1.0).

Simulation Model @« | Estimate Bias MCSE Mean of SEs MSE CP (%)

Weibull 0 ~ 0.004 | 0.083 0.085 0.007  95.5
1
A 0.003 | 0.089 0.092 0.008 95.3
G
~ 0.003 | 0.082 0.081 0.007  95.6
&3

Mixed Poisson 1 ~ 0.013| 0.146 0.145 0.021  95.2
G
A 0.013| 0.149 0.148 0.022 | 95.1
G
~ 0.013| 0.149 0.148 0.022 95.0
s

Mixed Poisson 2 ~ 0.027 | 0.200 0.202 0.041 955
G
~ 0.030 | 0.202 0.204 0.042 95.6
G
~ 0.030 | 0.203 0.206 0.042 95.3
G

Increase+Stable 112 ~ 0.005| 0.110 0.105 0.012 94.6
G
A 0.002 | 0.095 0.096 0.009 94.7
G
~ 0.002 | 0.094 0.096 0.009 94.7
G

Increase+Stable 1 ~ 0.007 | 0.144 0.145 0.021 | 944
G
A 0.007 | 0.138 0.137 0.019 94.8
8}
~ 0.005| 0.136 0.138 0.019  95.1
Cs

Increase+Decrease | 1/2 ~ 0.010 0.118 0.117 0.014 | 94.2
1
A 0.010| 0.117 0.118 0.014 946
8}
~ 0.006 | 0.108 0.109 0.012  95.3
Cs

Increase+Decrease | 1 ~ 0.012 | 0.161 0.160 0.026 | 94.3
G
A 0.013 | 0.161 0.161 0.026 94.6
8}
a 0.013| 0.156 0.156 0.025 94.6
3

Abbreviations: NB=Negative binomial;, PWNB=Piecewise negative binomial;
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error;
CP =95% CI coverage probability; k=Overdispersion parameter

rate uniformly. PWNB regression has smaller or similar bias and
MSE compared with NB regression for all scenarios except the mixed
Poisson process. However, for the case of mixed Poisson process, the
relative bias (bias divided by the MCSE) for PWNB regression is small
(less than 10%). Overall, PWNB regression has better performance
compared with NB regression.

Overall relative rates in piecewise negative binomial regression:
Table 3 compares the three defined overall relative rates in PWNB

regression when the interaction between treatment and time intervals
are included in the estimation model. For all scenarios with constant
relative rates over time, the results show the overall relative rates are
similar between the three methods. All three methods preserve 95%
CP. Table 4 shows the results for the cases with non-constant relative
rates. For all three scenarios with non-constant relative rates over time,
each method for the estimation of the overall relative rates preserves
the 95% CP with regard to their perspective quantity in Appendix A.3.

Real Data Application

We applied the proposed methods to data from a 24-week,
multicenter, open-label diabetes clinical trial for patients with T2DM
who had been treated with basal insulin [14]. Three hundred seventy-
four patients were randomly assigned to take either lispro mix 50/50
(LM, 50% insulin lispro protamine suspension and 50% lispro) or basal
bolus therapy (BBT, glargine at bedtime plus mealtime insulin lispro).
The comparisons between the two treatment groups for the whole
treatment periods for nocturnal and total hypoglycemic events were
reported previously [14]. In this real time application, we compared
the number of hypoglycemic events between the two treatment groups
for the titration period (0-12 week) and the maintenance period (12-24
week) using NB regression model and the proposed PWNB regression
model. The logarithm of days in treatment divided by 30 was used as an
offset parameter to estimate the hypoglycemic event rate per subject per
30 days. Table 5 shows the analysis results for the rate of hypoglycemic
events for each treatment group for each treatment period, and the
corresponding SE. The relative rate of LM versus BBT, the SE, 95%
CI and the p-value are also reported for each treatment period. Note
the weighting methods for {, and (, as described in Estimate of the
overall relative rate were exactly the same for this example with equal
time intervals. The estimates for the whole treatment period based on

Table 4: Comparison of different estimates of the overall relative rate through bias,
MCSE, mean of SEs, and MSE of relative rate and 95% CI coverage probability
(CP) based on 5,000 Monte Carlo simulations (Non-Constant Relative Rate).

Simulation Model | k  Estimate | Bias MCSE |[Mean of SEs| MSE | CP (%)

Increase+Stable 1 ~ -0.122  0.018 0.018 0.015 | 94.4
1
~ -0.010 | 0.022 0.021 0.001 945
G
~ -0.014 | 0.021 0.021 0.001 | 94.8
-

Increase+Decrease | 1 ~ -0.071 | 0.009 0.009 0.005 949
G
A -0.088  0.007 0.007 0.008  94.6
G
~ -0.068  0.009 0.009 0.005 95.4
-

Decrease+Stable 1 ~ 0.049 | 0.079 0.079 0.009  94.8
G
~ -0.026  0.064 0.063 0.005 94.4
G
a -0.009 0.065 0.064 0.004 945
3

Bias and MSE are calculated based on the overall relative rates defined by ¢,, and
95% Coverage probabilities are calculated as the rejection rate for testing the null
hypothesis with regard to their perspective definitions of overall relative rates.
Abbreviations: NB=Negative binomial; PWNB=Piecewise negative binomial;
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error;
CP =95% CI coverage probability; k=Overdispersion parameter
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Table 5: The estimated relative rate, SE for each group, and the relative rate, 95% Cl and p-value for comparison of LM versus BBT for nocturnal and total hypoglycemic

events.
Rate/30 Days Relative Rate
(Mean * SE) (LM versus BBT)
Variable Model Period BBT® LMm* Mean * SE 95% CI p-value
0-12 Week 0.42 +£0.07 0.35+0.04 1.19+0.25 (0.78,1.80) 0.41
PWNB 12-24 Week 0.68 + 0.08 0.51 £ 0.06 1.32+0.22 (0.94,1.84) 0.10
0-24 Week' 0.53 +£0.07 0.43 £0.05 1.25+0.21 (0.90,1.74) 0.18
Nocturnal Hypoglycemic events 0-24 Week? 0.55 +0.07 0.43 +0.05 1.27+£0.21 (0.92,1.74) 0.15
0-12 Week 0.42 +£0.07 0.35+0.04 1.19+0.25 (0.78,1.80) 0.42
NB 12-24 Week 0.66 + 0.08 0.52 +0.06 1.27 £ 0.22 (0.90,1.78) 0.17
0-24 Week 0.54 £ 0.07 0.43 +£0.05 1.24+0.20 (0.90, 1.72) 0.19
0-12 Week 3.47 £0.29 4.09+0.33 0.85+0.10 (0.68,1.07) 0.16
PWNB 12-24 Week 5.24 £ 0.41 5.05+0.37 1.04+0.11 (0.84,1.28) 0.73
0-24 Week' 4.26 £ 0.30 4.54 +0.31 0.94 £ 0.09 (0.77,1.14) 0.52
Total Hypoglycemic events 0-24 Week? 4.35+0.31 4.57 £0.31 0.95 £ 0.09 (0.79,1.16) 0.63
0-12 Week 3.48+0.29 4.07 £0.33 0.85+0.10 (0.68,1.07) 0.18
NB 12-24 Week 5.23 +£0.41 5.19+0.38 1.01+£0.11 (0.82,1.24) 0.95
0-24 Week 4.33+0.31 4.60 + 0.32 0.94 £ 0.09 (0.77, 1.14) 0.53

"The rate and relative rate were estimated using the methods for ¢, and ¢, in the Estimate of the overall relative rate

The rate and relative rate were estimated using the methods for (, as described in the Estimate of the overall relative rate

3N=171 and 163 for 0-12 week and 12-24 week, respectively;
4“N=173 and 158 for 0-12 week and 12-24 week, respectively;

Abbreviation: BBT=basal bolus therapy (glargine at bedtime plus mealtime insulin lispro); LM=lispro mix 50/50 (50% insulin lispro protamine suspension and 50% lispro);
LS Mean=Least square mean; SE=Standard error; NB=Negative binomial; PWNB=Piecewise negative binomial

Table 6: The estimated relative rate, SE, 95% CI and p-value for comparison of
maintenance period versus titration period for nocturnal and total hypoglycemic
events within each treatment group based on PWNB.

Relative Rate”

Variable Treatment
Mean SE 95% CI p-value

Nocturnal Hypoglycemic BBT 1.62 0.22 | (1.25,2.10)  <0.001
events LM 1.46 0.19  (1.13,1.88)  <0.001

BBT 1.51 0.12 | (1.29,1.76)  <0.001
Total Hypoglycemic events

LM 1.23 0.08 | (1.08,1.41) 0.002
*Relative rate of titration period (0-12 week) versus maintenance period (12-24

week)

Abbreviation: BBT=basal bolus therapy (glargine at bedtime plus mealtime insulin
lispro); LM=lispro mix 50/50 (50% insulin lispro protamine suspension and 50%
lispro); LS Mean=Least square mean; SE=Standard error; PWNB=Piecewise
negative binomial

different methods of weighting were similar. For the titration period
(0-12 week), the estimates provided by NB and PWNB were similar
for both treatment groups. Since there were no missing values in
the titration period, PWNB does not provide an advantage over NB
for the titration period. For the maintenance period (12-24 week),
the mean estimates of event rates were similar except for the total
hypoglycemic events for LM treatment (5.05 for PWNB and 5.19 for
NB, respectively). Due to the lower rate of missing values for BBT in
the maintenance period (4.7%), the estimates between PWNB and NB
were similar. However, as the rate of missing values was higher for LM
in the maintenance period (8.7%), the difference in the estimates was
larger. This indicates the potential advantage of PWNB over NB when
the rate of missing values is higher and the missing is at random. When
we compare the titration period with the maintenance period using
PWNB, the event rates in the maintenance period were significantly
higher for both nocturnal and total hypoglycemic events for both
treatment groups shown in Table 6.

Summary and Discussion

NB regression is a standard method for analyzing hypoglycemic
events, which are count data with overdispersion. When data is missing
due to dropouts, NB regression, even with adjustment for the duration,
may provide biased estimates and may inflate the Type-1 error.
Simulation showed that under the mechanism of MAR, NB regression
underestimates the SE and deflates 95% CP. PWNB regression, utilizing
the generalized linear mixed model to incorporate the within-subject
correlation, seems to provide estimators with little bias and preserves
95% CP under the assumption of missing at random. This is consistent
with the finding that likelihood-based estimation can preserve Type I
error under the mechanism of MAR. In addition, PWNB regression
allows the estimation of the relative rate at various time periods
within one model by simultaneously incorporating early dropout.
We introduced three quantities of overall relative rate when PWNB
regression is used. One can select the quantity of their interest based on
the nature of the real data and parameter of interest. For hypoglycemic
events data, we recommend the ratio of overall hypoglycemic events as
the “true relative rate” because the hypoglycemic events that occurred
early or late are of equal importance.

PWNB regression can be implemented through fitting a
generalized linear mixed model (e.g. PROC GLIMMIX in SAS 9.2). We
learned from the simulations that combining the following techniques
can improve the performance of PWNB regression and make the
model robust: 1) estimation based on maximization of subject-
specific residual likelihood through pseudo-likelihood technique with
Taylor linearization; 2) Newton-Raphson ridge optimization; and 3)
covariance structure of estimates calculated by “Sandwich” estimation.

In simulation, we used conditional PWNB regression with a
random effect as (2) in the simulation. Another way to model the within-
subject correlation for the same subject is to fit a marginal model, i.e.,
the correlation is modeled through the residuals. The marginal model
is generally hard to converge, especially for large number of periods.
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For the simulation scenarios in simulation, because there are four time
intervals, the convergence could not be achieved for some samples for
the marginal models. Therefore, the conditional model was used in the
simulation. We tested the marginal model for a simple scenario with
two time intervals and found it can preserve the 95% CP well. In the
real data application in real data application, the marginal model was
used.

There are several limitations for this research. First, we assume
the dropout occurred exactly at the end of each time period. In reality,
dropout may occur at any time. More complex dropout scenarios
may be explored in future research. Second, we assumed MAR in the
simulation. For MNAR, other existing techniques such as pattern
mixture models can be combined with PWNB regression to construct
more reliable estimators. Third, we select the clinical visits as the cutoff
points to divide the follow-up into intervals based on clinical interest.
How to choose the appropriate thresholds and optimal number of
intervals for more accurate inference from PWNB regression is still an
open question. Fourth, the PWNB regression is an approximation to
the true event rate, which is generally believed to be a smooth function
of time although simulation shows such an approximation provides
excellent results.
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