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Introduction
Diabetes is a chronic disease characterized by high blood glucose. 

Treatment for patients with Type 2 diabetes mellitus (T2DM) includes 
diet and exercise, oral antidiabetes agents, and injections such as 
insulin. The only treatment for Type 1 diabetes mellitus (T1DM) is 
insulin. Hypoglycemic events are common side effects of antidiabetic 
agents, especially insulin. It is important to develop antidiabetes agents 
that lead to less hypoglycemic events and better glycemic control. 
Therefore, it is of practical interest to use appropriate statistical methods 
to analyze hypoglycemic events. In clinical trials, hypoglycemic events 
are captured as recurrent events by patients’ self-reporting. If a patient 
drops out of the study, hypoglycemic events and other measurements 
will not be recorded. As a result, missing hypoglycemia data is a 
common problem in diabetes clinical trials. Little and Rubin [1] defined 
three classes of missing data: 

• Missing completely at random (MCAR): whether an
observation is missing does not depend on the observed nor
the unobserved values;

• Missing at random (MAR): the probability of a missing
observation depends only on the observed values;

• Missing not at random (MNAR): the probability of a missing
observation depends on the unobserved values.

Throughout, MAR is assumed in this research for data generation 
and statistical analysis of hypoglycemic events. In addition, because 
missing hypoglycemia is primarily due to dropout, we assume a 
monotone pattern of missing throughout, meaning that if a data point 
is missing at a specific time, the observations for this subject after that 
time point are also missing. 

Hypoglycemic events can be treated as a count variable with the 

total number of events during the period of interest for each subject. 
Poisson and negative binomial (NB) regressions are two commonly 
used generalized linear models for count data [2,3]. Zero-inflated 
Poisson and zero-inflated NB regressions were also proposed to 
account for excessive zero counts [4]. Recent research demonstrated 
that NB regression with additional Pearson overdispersion correction 
and the variance-covariance of the parameters estimated through 
“sandwich” estimation performs the best among all the options for 
hypoglycemia data without missing values [5]. However, according 
to clinical interest, researchers may be interested in comparing 
hypoglycemic event rates between treatment groups at different time 
periods. Fitting an NB regression model at each time period separately 
is not optimal because the events information outside that time period 
is lost. Furthermore, if missing data occur under the mechanism of 
MAR, this method may lead to biased estimates when hypoglycemia 
rates are not constant over time [6]. The objective of this research is to 
identify a simple and effective model to analyze hypoglycemic events 
data in diabetes clinical trials with MAR. We propose to use piecewise 
negative binomial (PWNB) regression, which fits NB regression models 
for the count data in time intervals through a generalized linear mixed-
effect model, where the time intervals are generally formed naturally 
based on the clinical visits or combination of multiple clinical visits. 
The within-subject correlation between the counts in different time 

*Corresponding author: Ming Wang, Division of Biostatistics and Bioinformatics,
Department of Public Health Sciences, Penn State College of Medicine, Hershey,
PA, 17033, USA, Tel: 717-531-5745; Fax: 717-531-5779; E-mail: mwang@phs.psu.edu

Received March 31, 2014; Accepted May 28, 2014; Published May 31, 2014

Citation: Wang M, Luo J, Fu H, Qu Y (2014) Piecewise Negative Binomial 
Regression in Analyzing Hypoglycemic Events with Missing Observations. J 
Biomet Biostat 5: 195. doi:10.4172/2155-6180.1000195

Copyright: © 2014 Wang M, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Piecewise Negative Binomial Regression in Analyzing Hypoglycemic 
Events with Missing Observations
Ming Wang1*, Junxiang Luo2, Haoda Fu2 and Yongming Qu2

1Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
2Department of Biometrics, Eli Lilly and Company, Indianapolis, Indiana, USA

Abstract
 In diabetes clinical trials, hypoglycemia can be captured. Negative binomial regression is emerging as a standard 

method for analyzing hypoglycemic events by considering overdispersion. However, in negative binomial regression 
for hypoglycemic events, variability of the subjects lost to follow up due to dropout is adjusted through an offset 
parameter, which assumes that dropout is missing completely at random and constant hypoglycemia rate over time. 
This assumption is vulnerable because dropout may be due to the excessive observed hypoglycemic events and the 
hypoglycemic event rate may change over time. In addition, the traditional way of using negative binomial regression 
to analyze hypoglycemic events only compares the counts of hypoglycemic events during a specified period. However, 
researchers may be interested in comparing hypoglycemic event rates between treatment groups at different time 
periods to understand the trend over time. Fitting a negative binomial model for each time period ignoring data from 
other periods may decrease testing power and introduce bias if the assumption of missing completely at random does 
not hold. We propose piecewise negative binomial regression to incorporate multiple time periods in one model through 
a generalized linear mixed-effect model. Due to clinical interest, we considered multiple weighting methods to estimate 
the overall relative rate of hypoglycemia over multiple periods between treatments. Simulations showed that piecewise 
negative binomial regression performed better than the traditional negative binomial regression in preserving Type I 
error. As an illustration, piecewise negative binomial regression was implemented in analyzing real data from a Type 2 
diabetes clinical trial.
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intervals can be modeled through the generalized linear mixed-effect 
model framework. In this paper, PWNB regression will be compared 
with NB regression through Monte Carlo simulations and real clinical 
data analyses. 

Methods
In this Method, we briefly describe two models: NB regression and 

PWNB regression. In the first model, the total count of hypoglycemia 
for each subject during the follow-up is summarized, and analyzed 
by an NB regression model. For the second model, the count of 
hypoglycemic events at each time interval is calculated and used for 
fitting longitudinal NB regression. Next, we provide the following 
notations: 

Let N denote the total number of subjects, Dij represent the 

jth hypoglycemic event time since randomization, and Ci be the 

censoring time, which is the minimum of dropout time and follow-
up time for the ith subject. The total duration can be partitioned 
into m intervals by prespecified time points 0=η0<η1<

...<ηm-

1<ηm where ηm is the maximum follow-up time. Note that the 
time intervals are determined based on the natural clinical visits 
and clinical interest. Assume the unit for all variables regarding 
time is day. Let Yip denote the number of events at time interval 

1,[ )η η−p p  for subject i. If 1η − <p iC , ( ) ( )1 ,η η− ≤= < <∑ip p ij p ijj iY I D I D C and 

Y ip i s  missing if 1η − >p iC ,  P=1,2…,m. Thus, the repeated count 

numbers are represented by ( )*

T

1 2, , , ,= …
i

i i inY Y Y*
iY  and the offset is 
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C
. The denominator “30” is 

used in the offset parameter to estimate the event rate per 30 days. If 
the event rate per year is to be estimated, the denominator of “365” 
may be used.

The dependent variable Yi with its offset δi will be used for NB 
regression, and *

iY with its offset δ *
i will be used for PWNB regression. 

Let Xi denote a vector of independent variables, such as baseline 
covariates, treatment indicator, among others. Note that Xi also 
includes the period variable noted by categorical values { }*1,2, , in… for 
PWNB regression. 

Negative binomial regression

NB regression is used to model count responses, usually for 
overdispersed count data where the conditional variance exceeds the 
conditional mean. It can be considered as a generalization of Poisson 
regression because it has the same mean structure but an extra parameter 
to model the overdispersion. For instance, when subject heterogeneity 
in the event rate is considered, a random effect ϕi will be included, 
thus conditional on ϕi, ( ) ( ) ( )i i i| ,   | ,    exp ,φ φ φ β= = T

i i i i iE Y Var YX X X
where a log link function is used to connect the mean and the linear 
regression of the covariate Xi. If ϕi follows a gamma distribution with 
ϕi~Gamma(κ-1,κ), the marginal count observation for the ith subject, Yi, 
follows an NB distribution defined by:

11( ) 1( ; , ) , 0,1, 2...
1 1 1! ( )

κκµκκ µ
κµ κµ

κ

Γ +    
= = =   

+ +   Γ

iy
i

i
i i i i

i i
i

y
P Y y y

y
    (1)

Where ( ) ( )| expµ β= = T
i i i iE Y X X and ( ) 2| .µ µ= +i i i iVar Y kX  The 

full-likelihood approach is used to estimate parameters. Recently, Luo 
and Qu [5] proposed that using “sandwich” estimation to calculate 
the covariance matrix of the parameter estimates together with 
Pearson overdispersion correction performs the most robust to model 
misspecification and improves the estimation efficiency by adjusting 
for baseline variables [6]. 

Piecewise negative binomial regression

PWNB regression is an extension of simple NB regression into 
longitudinal count data by generalized linear mixed-effect model. 
The normally distributed random effect is incorporated to capture 
the correlation of multiple counts within subjects in the analysis to 
improve the estimation. Following the notations in negative binomial 
regression, the response for the ith subject is , 1,2,..., ,i N=*

iY and the 
PWNB regression model with random intercept can be written by:

( )log | ipg i pg iµ γ β γ= +  			                 (2)

Where  ipgµ is the true mean event rate for subject i in treatment  
g (g=0 for the control group and g=1 for the treatment group) at time 
interval p, and βpg is a scalar coefficient indicating the population-
average mean event rate in treatment g at time interval p, and the 
random effect ( )2 ~ 0, .i N γγ σ Of note is that we consider the simplest 
and commonly used form with random intercept only, but more 
complicated within-subject correlation can be modeled through the 
residuals in generalized linear model framework if necessary. Since 
the generalized estimating equations method may produce biased 
estimators under MAR assumption [7], we use pseudo-likelihood 
based generalized linear mixed models in estimating in the parameters 
in the PWNB model [8]. The “Sandwich” method is used for variance 
estimation. Newton-Raphson optimization technique with ridging 
is used to improve the likelihood of convergence [9]. Appendix A.1 
and Appendix A.2 provide sample SAS codes. The relative rate of the 
treatment group over control group in each time interval p is: 

( )*
1 0exp β βζ = −p p p

which can be estimated directly based on the estimated parameters. 

Estimate of the overall relative rate: There are three possible 
quantities for the overall relative rate, which will be discussed next. 
Given a constant relative rate over time, the unweighted overall relative 
rate is defined by: 

( )1 1 0exp . .β βζ = −  				                     (3)

where
1

1. .
m

g pgpm
β β

=
= ∑ Because the time intervals may not be even, a 

weighted relative rate can be constructed as:	

2 1 01 1
,β β

= =
 ζ = − 
 ∑ ∑m m

p p p pp p
exp w w  	                                 (4)

with ( )p p 1 m/−= η −η ηpw  [10]. However, the interest of estimation 
may be the relative rate of the overall number of hypoglycemic events 
during the entire period. We can use an artificial example to illustrate 
the difference between the two quantities and the relative rate of the 
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overall events. Assume the entire period is divided into two equal 
intervals: in the first interval, there are 20 and 10 events for treatment 
groups 0 and 1, respectively; and in the second interval, there are 80 and 
90 events for treatment group 0 and 1, respectively. The overall event 
rate ratio is 1, while the above two quantities (3) and (4) give a ratio of 

1/2log10 log90 log20 log80 10 90exp 0.75.
2 2 20 80
+ +   − = × =   

   
 Therefore, we 

define a third relative rate with dp = ηp - ηp-1 as: 

2
1 1 11 1 1

3
2

0 0 01 1 1

E[exp( )] exp( / 2) exp( )

E[exp( )] exp( / 2) exp( )

γ

γ

β γ β σ β

β γ β σ β

= = =

= = =

+ +
ζ = = =

+ +

∑ ∑ ∑
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m m m
p p i p p p pp p p

m m m
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d d d

d d d
    (5)

The variance for 3 ζ is estimated by the delta method:
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The 100(1-α)% confidence interval (CI) for the 3ζ̂ is constructed 
using a log-transformation based on two reasons. First, the rate ratio 
estimate is a positive number; second, the log-link function is used in 
the PWNB model. For 3

ˆ , ( )ζlog  its 100(1-α)% CI can be given by:

( )
 ( ) 1

3

3
3

V ˆ
ˆ

ar
g ˆ

1
2lo

− α ζ Φ − 
 ζ ±

ζ
 			                    (7)

where Φ-1 is the inverse function of the cumulative distribution 
function (CDF) of the standard normal distribution. Thus, the 100(1-
α)% CI for 3ζ  is inversely calculated by an exponential transformation 
of the above CI in (7). 

Simulation
Simulation studies are conducted to evaluate the performance of 

NB and PWNB models described in Methods. For each scenario, 5,000 
random samples are generated and the corresponding parameters are 
estimated for each sample. Summary statistics based on the estimates 
from the 5,000 simulation samples are provided for assessing the 
performance of the two models. 

Simulation setting

We generate recurrent hypoglycemic events through three processes: 
Weibull process, mixed Poisson process, and mixed inhomogeneous 
Poisson process [11]. Data generated from mixed Poisson process with 
gamma distribution will follow a negative binomial distribution, but 
if dropouts/missing values exist, this fact does not hold under MAR 
assumption. For each scenario, each treatment group includes 150 
subjects and each subject will be followed up to 52 weeks.

The first generating process is Weibull, which considers the relative 
event rate may change over time, but assume there is no correlation 
among observations within a subject. The probability density function 

(PDF) for interevent time tij is ( )1
ij ijt exp tλγ γ− γ−λ  and CDF is 

1 exp( ).γλ− − ijt  tij is obtained by:

( )
1/

ij
log

t  ~ 0,1,
γ

λ
 =  
 
− i

iu Un f
u

i  			                    (8)

Three possible options for the shape parameter γ include the 
following: 0<γ<1 indicates the event rate decreases over time; γ=1 
indicates the event rate stays constant over time, which leads to the 
Poisson process; γ>1 indicates the event rate increases over time. We 
set γ=0.5 for the event rate decreasing over time in an L-shape. 

The second generating process is mixed Poisson, which allows for 
a random effect called “frailty” to be incorporated into the Poisson 
process to model the within-subject correlation. Conditioning on the 
frailty, the events are independent from each other within subject. The 
PDF for tij  is ( )i i ijexp tφ φλ −λ where ϕi~Gamma(κ-1,κ) with mean 1 and 
variance κ. Given ϕi, the time tij can be simulated from independent 
realizations of an exponential distribution with the rate λϕi:

( )log
, ~ 0,1

λφ
= − i

i
ij it u Uni

u
f  			                       (9)

For the above generating processes, we set the parameter λ to be 
λC=0.4 for the control group, and λT for the treatment group with the 
relative rate T

C

λζ
λ

= .

The third generating process is mixed inhomogeneous Poisson, 
which not only incorporates the frailty, but also allows for non-constant 
event rate over time. The PDF for tij is: 

( ) ( )( )ij i ij i ijt exp t t ,λ φ −λ φ  			                 (10)

where ϕi~Gamma(κ-1,κ) defined similarly in the mixed Poisson 
process. Here, we investigate two scenarios with piecewise event rate 
function. As noted in Piecewise negative binomial regression, the 
group indicator for the treatment group is g=1, otherwise, g=0 for the 
control group:

0 1 0 1

0 0

( ) exp( ),   12 0.15, 0.0208, log( )
( ) ,  where 

exp( ),   12 0.4

α α β α α β ζ
λ

δ β δ

+ ≤ = = ==  > = 

ij ij
ij

ij

t g t
t

g t
  (11) 

0 1 0 1

0 1 0 1

( )exp( ),   12 0.15, 0.0208, log( )
( ) ,  where 

( )exp( ),   12 0.52, 0.01
ij ij

ij
ij ij

t g t
t

t g t
α α β α α β ζ

λ
δ δ β δ δ

+ ≤ = = ==  + > = = − 
 (12)

Therefore, conditioning on ϕi, the event rate initially increases in the 
first 12 weeks, then stays stable (11) or declines (12) after 12 weeks. 
There are two popular methods for generating the inhomogeneous 
Poisson process: the inverse transform method [12] and the thinning 
method [13]. For easy manipulation and flexible computation, we use 
the latter.

To generate data for that MAR, we assume that probability of 
dropout at time ηp depends on the event rate prior to time ηp. The 
dropout probability is relative to the events that occur in the pth interval:

( ) ( )( )0 1 1 Pr subject  drop out at ( /  ,  1,2, ,p ip p pi f Y p mη α α η η −= + − = …

Where f(x)=1/(1+exp(-x)). We choose α0=-0.6 and α1=5 to generate 
the dropout rate ranging from 15% to 30%. 

Up to this point, all simulation scenarios above assume constant 
relative rate over time. To investigate three estimates of overall relative 
rate defined in Piecewise negative binomial regression for PWNB 
regression, in addition to evaluating the performance under scenarios 
with constant relative rate over time mentioned previously, three 
new scenarios with non-constant relative rates over time are added to 
evaluate the performance of the three estimates defined in Estimate of 
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PWNB regression preserves 95% CP, while NB regression inflates Type 
I error to a substantial degree, leading to smaller CP in all scenarios. 
PWNB regression has a smaller MSE for Weibull process and a larger 
MSE for mixed inhomogeneous Poisson process with “increase then 
decrease” risk rate, compared with NB regression. For NB regression, 
the mean of SEs is always smaller than the MCSE, which is probably 
why Type I error is inflated.

Table 2 shows the results for the case with true relative rate of 0.6. 
The 95% CP based on NB regression is lower than normal level for all 
scenarios, while PWNB regression preserves the appropriate coverage 

the overall relative rate. The new scenarios generate data from mixed 
inhomogeneous Poisson process (10) with κ=1, and the details of the 
calculations are provided in Appendix A.3:

1. “Increase+Stable”:

 
0 1 2 0 1 2

0 3 0 3

exp[( ) ],   12 0.8, 0.1, 2.5
( ) ,  where 

exp( ),   12 0.5, 0.83
ij ij

ij
ij

t g t
t

g t
α β β α β β

λ
δ β δ β

+ ≤ = = = −=  > = = − 
 (13)

The relative rate above increases over time before 12 weeks and 
remains constant after 12 weeks. The three quantities for the relative 
rate are calculated as follows: 1 2 30.231; 0.341; 0.346.ζ = ζ = ζ =

2. “Increase+Decrease”:

 
0 1 2 0 1 2

0 3 4 0 3 4

exp[( ) ],   12 0.8, 0.1, 2.5
( ) ,  where 

exp[( ) ],   12 0.5, 0.1, 0.37
ij ij

ij
ij ij

t g t
t

t g t
α β β α β β

λ
δ β β δ β β

+ ≤ = = = −=  + > = = − = 
 (14)

The relative rate above increases over time before 12 weeks and 
tends to decrease after 12 weeks. The three quantities for the relative 
rate are calculated as follows: 1 2 30.098; 0.073; 0.124.ζ = ζ = ζ =

3. “Decrease+Stable”:

 
0 1 2 0 1 2

0 3 0 3

exp[( ) ],   12 0.8, 0.1, 0.1
( ) ,  where 

exp( ),   12 0.5, 0.83
ij ij

ij
ij

t g t
t

g t
α β β α β β

λ
δ β δ β

+ ≤ = = − = −=  > = = −   (15)

The relative rate above decreases over time before 12 weeks and 
remains constant after 12 weeks. The three quantities for the relative 
rate are calculated as follows: 1 2 30.514; 0.449; 0.466.ζ = ζ = ζ =

For all simulations, K=5,000 Monte Carlo samples with the size of 
300 (150 per group) are simulated for each scenario. The bias, Monte 
Carlo standard error (MCSE), mean of the estimated standard errors 
(SEs), mean squared error (MSE), and 95% coverage probability 
(CP) for log scale of the relative rate are reported and compared 

between NB and PWNB regressions, where the bias is calculated by 

1

1 ˆ( log( ))β
=

− ζ∑
K

iK
MCSE given by ( )

1/2
2

1

ˆ1 ˆ ; 
1

K

iK
β β

=

 
−  − 

∑  mean of 

estimated SEs provided by ( )
1

ˆ1 K

i

SE
K

β
=
∑ with ( )ˆSE β based on the model; 

MSE obtained by ( )( )2
1

1 .logβ̂
=

− ζ∑
K

iK
PWNB regression, the 52-week 

duration is divided into four intervals: 0-2, 2-12, 12-26, 26-52 week to 
mimic the intervals of interest for several real clinical trials. In addition, 
the bias, MCSE, mean of the estimated SEs, MSE, and 95% CP for the 
overall relative rate over all periods are compared among the three 
methods defined in Estimate of the overall relative rate.

Simulation results

Negative binomial vs. piecewise negative binomial regressions: 
Tables 1 and 2 compare the performance of the two statistical models 
(NB versus PWNB regression) with respect to the log scale of relative 
rate. For both Tables 1 and 2, the PWNB model assuming a constant 
relative rate over time was used in estimating the overall relative rate 
(i.e., the interaction between treatment and time interval was not 
included in the estimation model). Table 1 presents the results under 
the null hypothesis that there is no treatment difference. The biases 
from all estimates are small and comparable between the two models. 

Simulation Model κ Method Bias MCSE Mean of SEs MSE CP (%)
Weibull 0 NB -0.389 0.131 0.108 0.169 88.7

PWNB -0.234 0.093 0.091 0.063 94.5

Mixed Poisson 1 NBM 0.002 0.134 0.116 0.018 92.0
PWNB 0.010 0.131 0.130 0.017 94.6

Mixed Poisson 2 NB -0.002 0.184 0.157 0.034 91.4
PWNB 0.015 0.175 0.173 0.031 94.3

Increase+Stable ½ NBM 0.040 0.083 0.082 0.008 92.0
PWNB 0.010 0.092 0.09 0.008 95.3

Increase+Stable 1 NB 0.064 0.113 0.107 0.017 89.3
PWNB 0.015 0.135 0.134 0.018 94.8

Increase+Decrease ½ NB -0.114 0.119 0.111 0.027 89.5
PWNB -0.059 0.111 0.111 0.016 94.4

Increase+Decrease 1 NB -0.112 0.162 0.145 0.038 89.2
PWNB -0.048 0.153 0.154 0.026 93.9

Abbreviations: NB=Negative binomial; PWNB=Piecewise negative binomial; 
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error; 
CP=95% CI coverage probability;  κ=Overdispersion parameter

Table 2: Comparison of NB and PWNB regressions through bias, MCSE, mean 
of SEs, and MSE of log(risk rate) and 95% CI coverage probability (CP) based on 
5,000 Monte Carlo simulations (true relative rate ζ=0.6 for treatment versus control 
groups).

Simulation Model κ Method Bias MCSE Mean of SEs MSE CP (%)

Weibull 0 NB 0.0004 0.128 0.105 0.016 89.1
PWNB 0.0002 0.087 0.080 0.008 94.9

Mixed Poisson 1 NBM 0.001 0.135 0.116 0.018 90.8
PWNB 0.001 0.143 0.143 0.020 95.4

Mixed Poisson 2 NB 0.002 0.185 0.157 0.034 90.4
PWNB 0.001 0.198 0.198 0.039 95.2

Increase+Stable 1/2 NBM 0.001 0.081 0.078 0.007 94.6
PWNB 0.001 0.094 0.095 0.008 95.5

Increase+Stable 1 NB -0.003 0.109 0.102 0.012 94.2
PWNB -0.005 0.137 0.138 0.019 95.0

Increase+Decrease 1/2 NB 0.004 0.117 0.109 0.014 93.2
PWNB 0.003 0.107 0.108 0.011 95.1

Increase+Decrease 1 NB -0.003 0.157 0.140 0.025 92.4
PWNB -0.002 0.153 0.152 0.023 94.8

Abbreviations: NB=Negative binomial; PWNB=Piecewise negative binomial; 
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error; 
CP=95% CI coverage probability;  κ=Overdispersion parameter

Table 1: Comparison of NB and PWNB regressions through bias, MCSE, mean 
of SEs, and MSE of log(risk rate) and 95% CI coverage probability (CP) based on 
5,000 Monte Carlo simulations (true relative rate ζ=1.0 for treatment versus control 
groups).
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rate uniformly. PWNB regression has smaller or similar bias and 
MSE compared with NB regression for all scenarios except the mixed 
Poisson process. However, for the case of mixed Poisson process, the 
relative bias (bias divided by the MCSE) for PWNB regression is small 
(less than 10%). Overall, PWNB regression has better performance 
compared with NB regression.

Overall relative rates in piecewise negative binomial regression: 
Table 3 compares the three defined overall relative rates in PWNB 

regression when the interaction between treatment and time intervals 
are included in the estimation model. For all scenarios with constant 
relative rates over time, the results show the overall relative rates are 
similar between the three methods. All three methods preserve 95% 
CP. Table 4 shows the results for the cases with non-constant relative 
rates. For all three scenarios with non-constant relative rates over time, 
each method for the estimation of the overall relative rates preserves 
the 95% CP with regard to their perspective quantity in Appendix A.3.

Real Data Application
We applied the proposed methods to data from a 24-week, 

multicenter, open-label diabetes clinical trial for patients with T2DM 
who had been treated with basal insulin [14]. Three hundred seventy-
four patients were randomly assigned to take either lispro mix 50/50 
(LM, 50% insulin lispro protamine suspension and 50% lispro) or basal 
bolus therapy (BBT, glargine at bedtime plus mealtime insulin lispro). 
The comparisons between the two treatment groups for the whole 
treatment periods for nocturnal and total hypoglycemic events were 
reported previously [14]. In this real time application, we compared 
the number of hypoglycemic events between the two treatment groups 
for the titration period (0-12 week) and the maintenance period (12-24 
week) using NB regression model and the proposed PWNB regression 
model. The logarithm of days in treatment divided by 30 was used as an 
offset parameter to estimate the hypoglycemic event rate per subject per 
30 days. Table 5 shows the analysis results for the rate of hypoglycemic 
events for each treatment group for each treatment period, and the 
corresponding SE. The relative rate of LM versus BBT, the SE, 95% 
CI and the p-value are also reported for each treatment period. Note 
the weighting methods for ζ1 and ζ2 as described in Estimate of the 
overall relative rate were exactly the same for this example with equal 
time intervals. The estimates for the whole treatment period based on 

Bias and MSE are calculated based on the overall relative rates defined by ζ3, and 
95% Coverage probabilities are calculated as the rejection rate for testing the null 
hypothesis with regard to their perspective definitions of overall relative rates.
Abbreviations: NB=Negative binomial; PWNB=Piecewise negative binomial; 
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error; 
CP =95% CI coverage probability;  κ=Overdispersion parameter

Simulation Model κ Estimate Bias MCSE Mean of SEs MSE CP (%)
Weibull 0



1ζ
0.004 0.083 0.085 0.007 95.5



2ζ
0.003 0.089 0.092 0.008 95.3



3ζ
0.003 0.082 0.081 0.007 95.6

Mixed Poisson 1


1ζ
0.013 0.146 0.145 0.021 95.2



2ζ
0.013 0.149 0.148 0.022 95.1



3ζ
0.013 0.149 0.148 0.022 95.0

Mixed Poisson 2


1ζ
0.027 0.200 0.202 0.041 95.5



2ζ
0.030 0.202 0.204 0.042 95.6



3ζ
0.030 0.203 0.206 0.042 95.3

Increase+Stable 1/2


1ζ
0.005 0.110 0.105 0.012 94.6



2ζ
0.002 0.095 0.096 0.009 94.7



3ζ
0.002 0.094 0.096 0.009 94.7

Increase+Stable 1


1ζ
0.007 0.144 0.145 0.021 94.4



2ζ
0.007 0.138 0.137 0.019 94.8



3ζ
0.005 0.136 0.138 0.019 95.1

Increase+Decrease 1/2


1ζ
0.010 0.118 0.117 0.014 94.2



2ζ
0.010 0.117 0.118 0.014 94.6



3ζ
0.006 0.108 0.109 0.012 95.3

Increase+Decrease 1


1ζ
0.012 0.161 0.160 0.026 94.3



2ζ
0.013 0.161 0.161 0.026 94.6



3ζ
0.013 0.156 0.156 0.025 94.6

Abbreviations: NB=Negative binomial; PWNB=Piecewise negative binomial; 
MCSE=Monte Carlo standard error; SE=Stand error; MSE=Means square error; 
CP =95% CI coverage probability; κ=Overdispersion parameter

Table 3: Comparison of different estimates of the overall relative rate through bias, 
MCSE, mean of SEs, and MSE of relative rate and 95% CI coverage probability 
(CP) based on 5,000 Monte Carlo simulations (true relative rate ζ=1.0).

Simulation Model κ Estimate Bias MCSE Mean of SEs MSE CP (%)
Increase+Stable 1



1ζ
-0.122 0.018 0.018 0.015 94.4



2ζ
-0.010 0.022 0.021 0.001 94.5



3ζ
-0.014 0.021 0.021 0.001 94.8

Increase+Decrease 1


1ζ
-0.071 0.009 0.009 0.005 94.9



2ζ
-0.088 0.007 0.007 0.008 94.6



3ζ
-0.068 0.009 0.009 0.005 95.4

Decrease+Stable 1


1ζ
0.049 0.079 0.079 0.009 94.8



2ζ
-0.026 0.064 0.063 0.005 94.4



3ζ
-0.009 0.065 0.064 0.004 94.5

Table 4: Comparison of different estimates of the overall relative rate through bias, 
MCSE, mean of SEs, and MSE of relative rate and 95% CI coverage probability 
(CP) based on 5,000 Monte Carlo simulations (Non-Constant Relative Rate).
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different methods of weighting were similar. For the titration period 
(0-12 week), the estimates provided by NB and PWNB were similar 
for both treatment groups. Since there were no missing values in 
the titration period, PWNB does not provide an advantage over NB 
for the titration period. For the maintenance period (12-24 week), 
the mean estimates of event rates were similar except for the total 
hypoglycemic events for LM treatment (5.05 for PWNB and 5.19 for 
NB, respectively). Due to the lower rate of missing values for BBT in 
the maintenance period (4.7%), the estimates between PWNB and NB 
were similar. However, as the rate of missing values was higher for LM 
in the maintenance period (8.7%), the difference in the estimates was 
larger. This indicates the potential advantage of PWNB over NB when 
the rate of missing values is higher and the missing is at random. When 
we compare the titration period with the maintenance period using 
PWNB, the event rates in the maintenance period were significantly 
higher for both nocturnal and total hypoglycemic events for both 
treatment groups shown in Table 6.

Summary and Discussion
NB regression is a standard method for analyzing hypoglycemic 

events, which are count data with overdispersion. When data is missing 
due to dropouts, NB regression, even with adjustment for the duration, 
may provide biased estimates and may inflate the Type-1 error. 
Simulation showed that under the mechanism of MAR, NB regression 
underestimates the SE and deflates 95% CP. PWNB regression, utilizing 
the generalized linear mixed model to incorporate the within-subject 
correlation, seems to provide estimators with little bias and preserves 
95% CP under the assumption of missing at random. This is consistent 
with the finding that likelihood-based estimation can preserve Type I 
error under the mechanism of MAR. In addition, PWNB regression 
allows the estimation of the relative rate at various time periods 
within one model by simultaneously incorporating early dropout. 
We introduced three quantities of overall relative rate when PWNB 
regression is used. One can select the quantity of their interest based on 
the nature of the real data and parameter of interest. For hypoglycemic 
events data, we recommend the ratio of overall hypoglycemic events as 
the “true relative rate” because the hypoglycemic events that occurred 
early or late are of equal importance. 

PWNB regression can be implemented through fitting a 
generalized linear mixed model (e.g. PROC GLIMMIX in SAS 9.2). We 
learned from the simulations that combining the following techniques 
can improve the performance of PWNB regression and make the 
model robust: 1) estimation based on maximization of subject-
specific residual likelihood through pseudo-likelihood technique with 
Taylor linearization; 2) Newton-Raphson ridge optimization; and 3) 
covariance structure of estimates calculated by “Sandwich” estimation. 

In simulation, we used conditional PWNB regression with a 
random effect as (2) in the simulation. Another way to model the within-
subject correlation for the same subject is to fit a marginal model, i.e., 
the correlation is modeled through the residuals. The marginal model 
is generally hard to converge, especially for large number of periods. 

Variable Treatment
Relative Rate* 

Mean SE 95% CI p-value

Nocturnal Hypoglycemic 
events

BBT 1.62 0.22 (1.25,2.10) <0.001

LM 1.46 0.19 (1.13,1.88) <0.001

Total Hypoglycemic events
BBT 1.51 0.12 (1.29,1.76) <0.001

LM 1.23 0.08 (1.08,1.41) 0.002

*Relative rate of titration period (0-12 week) versus maintenance period (12-24 
week)
Abbreviation: BBT=basal bolus therapy (glargine at bedtime plus mealtime insulin 
lispro); LM=lispro mix 50/50 (50% insulin lispro protamine suspension and 50% 
lispro); LS Mean=Least square mean; SE=Standard error; PWNB=Piecewise 
negative binomial

Table 6: The estimated relative rate, SE, 95% CI and p-value for comparison of 
maintenance period versus titration period for nocturnal and total hypoglycemic 
events within each treatment group based on PWNB.

  Rate/30 Days
(Mean ± SE)

Relative Rate 
(LM versus BBT)

Variable Model Period BBT3 LM4 Mean ± SE 95% CI p-value

Nocturnal Hypoglycemic events

PWNB

0-12 Week 0.42 ± 0.07 0.35 ± 0.04 1.19 ± 0.25 (0.78,1.80) 0.41
12-24 Week 0.68 ± 0.08 0.51 ± 0.06 1.32 ± 0.22 (0.94,1.84) 0.10
0-24 Week1 0.53 ± 0.07 0.43 ± 0.05 1.25 ± 0.21 (0.90,1.74) 0.18
0-24 Week2 0.55 ± 0.07 0.43 ± 0.05 1.27 ± 0.21 (0.92,1.74) 0.15

NB
0-12 Week 0.42 ± 0.07 0.35 ± 0.04 1.19 ± 0.25 (0.78,1.80) 0.42
12-24 Week 0.66 ± 0.08 0.52 ± 0.06 1.27 ± 0.22 (0.90,1.78) 0.17
0-24 Week 0.54 ± 0.07 0.43 ± 0.05 1.24 ± 0.20 (0.90, 1.72) 0.19

Total Hypoglycemic events

PWNB

0-12 Week 3.47 ± 0.29 4.09 ± 0.33 0.85 ± 0.10 (0.68,1.07) 0.16
12-24 Week 5.24 ± 0.41 5.05 ± 0.37 1.04 ± 0.11 (0.84,1.28) 0.73
0-24 Week1 4.26 ± 0.30 4.54 ± 0.31 0.94 ± 0.09 (0.77,1.14) 0.52
0-24 Week2 4.35 ± 0.31 4.57 ± 0.31 0.95 ± 0.09 (0.79,1.16) 0.63

NB
0-12 Week 3.48 ± 0.29 4.07 ± 0.33 0.85 ± 0.10 (0.68,1.07) 0.18
12-24 Week 5.23 ± 0.41 5.19 ± 0.38 1.01 ± 0.11 (0.82,1.24) 0.95
0-24 Week 4.33 ± 0.31 4.60 ± 0.32 0.94 ± 0.09 (0.77, 1.14) 0.53

1The rate and relative rate were estimated using the methods for ζ1 and ζ2 in  the Estimate of the overall relative rate
2The rate and relative rate were estimated using the methods for ζ3 as described in the Estimate of the overall relative rate
3 N=171 and 163 for 0-12 week and 12-24 week, respectively;
4 N=173 and 158 for 0-12 week and 12-24 week, respectively;
Abbreviation: BBT=basal bolus therapy (glargine at bedtime plus mealtime insulin lispro); LM=lispro mix 50/50 (50% insulin lispro protamine suspension and 50% lispro); 
LS Mean=Least square mean; SE=Standard error; NB=Negative binomial; PWNB=Piecewise negative binomial

Table 5: The estimated relative rate, SE for each group, and the relative rate, 95% CI and p-value for comparison of LM versus BBT for nocturnal and total hypoglycemic 
events.
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For the simulation scenarios in simulation, because there are four time 
intervals, the convergence could not be achieved for some samples for 
the marginal models. Therefore, the conditional model was used in the 
simulation. We tested the marginal model for a simple scenario with 
two time intervals and found it can preserve the 95% CP well. In the 
real data application in real data application, the marginal model was 
used. 

There are several limitations for this research. First, we assume 
the dropout occurred exactly at the end of each time period. In reality, 
dropout may occur at any time. More complex dropout scenarios 
may be explored in future research. Second, we assumed MAR in the 
simulation. For MNAR, other existing techniques such as pattern 
mixture models can be combined with PWNB regression to construct 
more reliable estimators. Third, we select the clinical visits as the cutoff 
points to divide the follow-up into intervals based on clinical interest. 
How to choose the appropriate thresholds and optimal number of 
intervals for more accurate inference from PWNB regression is still an 
open question. Fourth, the PWNB regression is an approximation to 
the true event rate, which is generally believed to be a smooth function 
of time although simulation shows such an approximation provides 
excellent results. 
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