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Physical Interpretation of Noncommutative Algebraic Varieties
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Abstract

The theory of algebraic varieties gives an algebraic interpretation of differential geometry, thus of our physical
world. To treat, among other physical properties, the theory of entanglement, we need to generalize the space
parametrizing the objects of physics. We do this by introducing noncommutative varieties.
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Introduction

Differential geometry is simplified by applying algebraic geometry.
Then all holomorphic functions are interpreted as polynomials, and
completed to power series. We have used infinitesimal methods, or
rather deformation theory of modules, to construct varieties as moduli
of the closed points. Eriksen [1] and Laudal [2] for a precise treatment.
Then a generalization to deformation theory over commutative rings
to noncommutative, have made the definition of noncommutative
varieties possible.

In this short text, we show how our results can be stated without
mentioning deformation theory, and we show one way of interpreting
noncommutative varieties of matrix polynomial algebras.

Finally, we show how our notion of entanglement gives a kind of
smoothing of a singularity. In articles to come, we will show how these
varieties can (and must) be constructed using deformation theory.

Matrix Polynomial Algebras
Definition 1

Let M € M, be a matrix with natural numbers m, as entries, and let
R be a commutative ring. We then let R[M] be the R-algebra generated
by the matrices (paths) t; (lij ), 1< 1ij < m, 1 <, j < r. Alternatively
R[M]=T, (V,) the tensor algebra over R* of the module generated by
the t, (1) given by matrix multiplication.

2 1
Example 1. We let r=2 and M:[O ZJ' Then

Rt (1),4,(2)] (1)
RIM]= [ 0 Rity (1)1 (2)]]’

the R?=R - id(2)-algebra generated by the matrix generators.

We should notice that in general algebraic theory, there is no
reason why the algebras on the diagonal, that is R, =e¢Re,, should
be commutative. This is the reason that we use the square brackets in
the notation. The general, not necessarily commutative, polynomial
algebra over R with M variables should then be named R(M > .

For the rest of this text, we will let R=k, an algebraically closed field
of characteristic 0. And of course, because we are giving the physical
interpretation, we think of k as the field of complex numbers.

The Non Commutative Affine Space
We put AY = H A"

1<i<r

For a matrix polynomial, that is an element f:(fij) €k[M ],and a

point P = (p,...p,) Ek, weletf (P )=(f,(p,),...,f (p,)). Then as
usual, we let the complements of the algebras sets be the topology of
AY.

Definition 2

Let ack[M] be a two-sided ideal. Then the set
Z(a)={Pe A" | f(P)=0forallf ea}is called an algebraic set, or a
Zariski closed set.

The resulting topology is obviously the product topology of the
Zariski topology, as the entries off the diagonal doesn’t influence the
state. As we will see, these variables are present to make the dynamics
in the space. Each of the com- mutative affine spaces in the product
corresponds to the ordinary Euclidean space.

As in the commutative situation, we let the coordinate ring of
an algebraic set Z(a)be A[M]/a(we assume that algebraic sets are
reduced). The ring of regular functions is the most problematic one
to define in the noncommutative case. This is where the dynamics,
or entanglement, comes into the picture. We need to translate the
deformation theory to the concept of a semi-local ring.

Lemma 1: The simple one-dimensional k{M]-modules corresponds
to the maximal idealsm, c k[M],. Thus there is a one-to-one
correspondence between point in AM and tuples of maximal ideals with
one-dimensional quotient.

Definition 3

LetP=(p,,...,p,) €V =Z(a)c AY. We define the semi- local
ring of P in V as O, , = (k[M]/a), where the notation R, for a matrix
algebra R means that each R, is localized in p,.

Example 2:
_ k[t11(1)5t11(2)] <t12(1)’t12(2)>
<t ,0,2)> Ko,M,@1),
K, Do, ()], <6,(0,6,(2) >

<6, (D,1,(2) > k[t (1),1,,(2)],,
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Then the above mentioned transformation of the deformation
theory is that a regular function is a global function that is regular in
every point:

Definition 4
Let U =¥ < A" be an open subset of the affine variety V. Then the

ring of regular functions over U is O, (U) =lim 0, ,

PeU

The Dynamics in Noncommutative Affine Varieties

The dynamics in any space is given by the structure of the tangents.
This is because the tangent space is the space generated by the tangent
directions, which are the directions in which the actual geometry allows
dynamics. Thus the tangent space tells what kind of changes in state
that are possible. Let us recall the commutative situation, equivalently
the differential geometric one: Consider a derivation

0:4, > A, /mA, =k,
satisfying the Leibniz ruled(ab)=ad(b)+(a)b. This induces a
k-linear morphism

o:m/m? >k,

which is an element in the dual space (m/m?)". Thus in the
ordinary (commutative) setting, the directions of change is the basis
element in the tangent space (m/m’”)”. When we let one point
actually be r points, we have to generalize slightly.

Let R be a quotient of a matrix polynomial algebra, and let 7, and
V, be two simple one-dimensional left R-modules. Then Homk (V;,V;)
is a left-right bi module by (-¢)(v,) = ¢(r-v;) and (¢-r)(v,) =r-¢(v,).

Definition 5: The 1-radical of R is defined as (1,R) = ﬂker Py Py

dim, V=1
where p : R > End, (V) is the structure morphism of V.

Of course, this indicates that we should really work with the
Jacobson radical, taking all simple modules into account. This applied
theory is generalized in work to be published in the near future. For
the rest of this section, we use the word radical for the 1-radical, and
we use the notation m=I(1, R). Then we define the tangent space in this
situation as:

Definition 6: The tangent space of the affine variety V in the point
P=(p,,...,p,)is T,(")=(m/m*)" where M"=Hom (M,k") for any
A(V)-module M .

(K] ke,
kKL,

j and consider two general points
Vi=kl4, )/t —a) .V, =klt,]/ (1, =b).
First, we compute

Der, (S,Hom, (V,,V,))/inner.

(1, 1): Let 8 € Derk (S, End, (V,)). Then
S(e)=6(e)=25(e)=6(e)=0,i=1,2.

O(t,)=0(t,e,)=6(t,)e, =0,
O(ty)=0(ety) =€,0(,)=0,
O(ty,)=06(ty)e, =0,

and finally

ot))=ca.

As all inner derivations are zero (easily seen from the computation
above, in particular because ad, (1) =af— fa=0, we find that Der, (V,,
V )/Inner is generated by the derivation sending t,, to a, and all other
generators to 0.

(1, 2):

For € Der, (S, Hom, (V,, V))) things are slightly different.
o(e) = 5(e]2) =¢,6(e)+5(e)e, =(e), that is, the above trick doesn’t
work quite the same way. However, as 5(1) = 5(e, +e,) =0, for every
derivation &:S — Hom,(V,,V,),we find 8(e,) =a,6(e,) =—a

o(e)=a, d(e,) =0,

o(t,)=0(t,,)=0(t,)e +1,,0(e) = ac,

(L) =0(t,e)=9(t,)e =0,

O(t,,) =0(eyty,) =0(ey)ty, =—ba,

o(t,)=0-

So a general derivation can be written, the * denoting the dual,

S =ae —ae, +aat;, —bat,, + ot} .

For the inner derivations, we compute

ad,(e) = e, —ef=-f,

ady(e)) = pe,—e,f =3,

ad/,(t”) =-fa,

ady(t,,) = pb,

ad, = ye/ —ye; +ayt,, —byt;,, where we have put y =—p.

So as ad,(t,) =0, and there are no conditions on §(t,), we Der,
V) =kt =kd, -

The cases (2, 1) and (2, 2) are exactly similar.

Generalizing the computation in the above example, we have
proved the following:

Lemma 2: Let S be a general free rxr matrix polynomial algebra,
and let V=V (p,) be the point p, in entry i, i. Then the tangent space
from V, to V. is Der, (V,7,)= @,d;]kd,”(,).
Entanglement: Blowing Up a Singularity

For a precise treatment of the deformation theory leading to this
examples, see [3]. We consider a coincidently chosen singularity, the
E -singularity

Eq=Kx, y11/ (x* + ")

This is a singularity because the tangent space is of dimension d>1
which is too big. So we need to make space for the entanglement, that
is the interrelations. Let

R :(k[tll] <t12>

ob ) ety

For a point P = (a,, a,) in this space, we compute the tangent space
in this point by applying Lemma 2.

d(tﬁltIZ +tl2t;2) = d,,,. (P) (Olf +0!;) =0

Suggest that the points are pairwise identified, and with an extra
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tangent from zero to zero. This justifies that we can call this a blowup
of the singularity.

Of course, it would be more obvious if we, in the matrix above,
localized in origo, then the identification is superfluous. Anyway, the
interpretation must be taken by care.

Also, there is a long way to go to prove that the physicist’s notion
of entanglement has anything to do with this momentum between

different points. Our main achievement is to give an example on how
extra space for a tangent direction can be given.
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