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Introduction
Recently, drug residues contaminating water supplies and their 

ecological effects [1] has attracted scientific attention. These molecules 
are intended to induce useful physiological effects for diagnosing, 
treating or preventing diseases but have significant environmental 
and sanitary impacts. Partially metabolised by host enzymes, both 
unchanged antibiotics and pharmacologically active metabolites are 
excreted in urine and faeces [2,3]. Sewage treatment plants (STP) 
consequently receive large quantities of active drugs in wastewater, they 
are often incompletely removed, releasing significant quantities to the 
environment. Due to the widespread use and limited biodegradability 
of antibiotics, they are ubiquitous [4-6], persisting dependent on their 
chemical/physical characteristics. Erythromycin has a ½-life >1 year. 
Environmental drug concentrations range between nano- and micro-
grams/litre, posing no risk of acute toxicity but possible dangers from 
chronic exposure [7]. Toxic effects depend on: dose, exposure duration, 
administrative route and characteristics of the exposed organism, 
their action on human subjects isn’t the only problem, environmental 
antibiotics can induce bacterial resistance [8,9], posing dangers to 
public health. Increasingly, infectious bacteria become resistant to 
available remedies. We seek to propose a photo-catalytic method to 
enhance water treatment and reduce pollutants to acceptable levels. 
Photolysis and photo-catalysis are compared and a photo-chemical 
method for removing antibiotics from water developed.

Materials and Methods
Materials

Chemicals: Representatives of four classes of water-soluble 
antibiotics frequently contaminating European water supplies [10-
12] were chosen and photo-degraded. Amoxicillin is a β-lactam,
streptomycin sulphate an aminoglycoside, erythromycin a macrolide
and ciprofloxacin a fluoroquinolone. Distilled water was used
throughout. Amoxicillin was extracted from 1 g Velamox trihydrate
tablets, ciprofloxacin from Teva; Applichem supplied erithromycin
and streptomycin sulphate.

Preparation of solutions: Water Samples were weighed with an 
analytical balance and dissolved in distilled in volumetric flasks.

The procedure adopted for tablets was:

1. Grind finely and homogenously in a porcelain mortar.

2. Decant into centrifuge tube, with ~ 8 mL distilled water.

3. Sonicate for 5 minutes.

4. Centrifuge at 10,000 rpm for 10 minutes.

5. Transfer supernatant using a pipette to a flask.

6. Add a further 8 mL of solvent, sonicate for 5 minutes, centrifuge 
and repeat step 5.

7. Repeat step 6 until all was dissolved.

8. Transfer powder to a funnel covered with filter paper and wash
down.

9. Transfer rinse water to flask in step 5 and bring to volume.

10. Analyze resulting solution by spectrophotometry and HPLC.

Instruments

Uv-vis: Samples of drug solutions were examined using a Perkin-
Elmer Lambda 16 dual-beam spectrometer. 

We used appropriate concentration and measured the maximum 
absorption wavelength, λ max, to set the HPLChromatograph UV 
detector.

HPLC: Using a Perkin Helmer 2000 chromatograph and BIO-
RAD Bio-sil ODS-5S L 250 mm × 4 mm ID Perkin Elmer LC-90 UV 
detector, analyses was performed at room temperature under isocratic 
conditions.

The compositions and acidity were:

For amoxicillin [13]: pH 6 phosphate buffer: methanol (95:5) at 0.8 
mL/min.
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For erythromycin [14]: 0.02M potassium phosphate dibasic buffer: 
acetonitrile (60:40) at 1 mL/min.

FM streptomycin [15,16] : pH 3.3 water+2 mL of phosphoric acid: 
acetonitrile (80:20)

For ciprofloxacin [17]: pH 3, 0.042 mM aqueous phosphoric acid: 
acetonitrile (87:13) at 0.8 mL/min.

We followed progress using chromatograms of photo-degradation 
at set times by comparing the initial and final chromatographic peak 
areas with an HPLC UV-VIS data-logger (DrDAQ) recording analogue 
voltages. The Pico Log software employed processed the data on a PC 
and Peak Fit v 4.12 calculated the areas.

Methods

Photolysis and photo-catalysis: Photo-degradation, usually by 
sun light energy, forms highly reactive chemicals such as OH radicals 
[18,19] promoting substrate degradation [20]. Interactions between 
light and organic molecules in aqueous solution lead to photolysis. 
Photon absorption induces electron transfer to excited states breaking 
bonds and changing the molecular structure:

2 2substrate  h  degradation products CO  H O  inorganic salts+ ν → + +

Using direct photolysis for photo-degradation is cheaper but less 
efficient than combining light with oxidizing agents. Heterogeneous 
photo-catalysis is oxidative, light enables solid semiconductors to 
catalyze photo-degradation. The positive aspects of this technology are 
its effectiveness on recalcitrant molecules, speed and cost.

The literature reports using semiconductors ZnO, CeO2, CdS, 
ZnS, etc as catalysts [21,22], the most efficient and commonly used 
semiconductor being titanium dioxide TiO2 [22-26] occurring 
naturally as: anatase, rutile and brookite, it’s photo-stable, insoluble 
and non-toxic [26,27]. We used anastase since several reports identify it 
as the best crystalline form [18,28]. A Lightning Cure LC8 Hamamatsu 
9566-02 L UV lamp served to photo-degrade the drug solutions at 
wavelengths 240-400 nm. An optic fibre cable emitting UV light was 
inserted in a plywood structure housing a magnetic stirrer. Parallel 
TiO2 (DEGUSSA P25) catalyzed photolytic degradations served as 
controls. They were irradiated in 50 ISO/GL Duran glass bottles and 
0.01 g TiO2 was added to assess the photo-stability of 20 mL samples 
as described above. Fractions awaiting analysis were kept in the dark 
to avoid photo-degradation. Catalytic degradation products were 
centrifuged at 10,000 rpm for 14 min, supernatants collected with 
Pasteur pipettes and centrifuged for 7 min at 10,000 rpm and analyzed.

Toxicity tests: We intend to demonstrate that catalysed photo-
degradation transforms toxic drugs to safer degradation products. 
Toxicity was evaluated by measuring inhibition of Saccharomyces 
cerevisiae [29-31] respiration.

Principle

Breathing enables biochemical combustion of nutrients, providing 
aerobic cells with energy for fuelling vital functions [32], e.g. 
combustion of glucose is caytalyzed:

6 12 2 2 2 2C H O  6 O  6 CO  6 H O+ → +

Yeast respiration is sensitive to toxins, Clark amperometric 
electrodes Shown in figure 1 comprising an electrolytic cell with Pt/
Au cathodes and Ag/AgCl anodes separated by epoxy resin determine 
[O2], enabling evaluation of this inhibition. The electrodes on plastic 
supports are immersed in the electrolyte, behind a Teflon gas-

permeable membrane, using a potential ~ -650 mV w.r.t the anode. 
Figure 1 At the cathode, O2 is reduced:

2 2O  4 H  4 e  2 H O,  whilst at the anode : Ag  Cl AgCl  e+ − + − −+ + → + → +

The current between cathode and anode is proportionate to 
the oxygen level outside the membrane. Yeast plates were prepared 
following Campanella et al. [30]. Culture plates were stored in a 
refrigerator upside down wrapped in parafilm for up to 15 days 
(before becoming inactive). A diskette tablet with diameter matching 
the electrode tip was etched from a plate and fixed outside the Clark 
electrode’s Teflon membrane, through a dialysis membrane and 
O-ring. This biosensor was immersed in 10 mL of distilled water at 
25°C in a 50 mL beaker with a magnetic stirrer. 10 mL of 1M glucose 
was added when the electrode measuring ppm O2 without yeast 
respiration was stable. Glucose triggers yeast respiration, consuming 
oxygen and reducing the signal, (Δppm O2) B, when stable analysis was 
complete. After incubating the tablet for 3 hours, toxicity was assessed 
using the same process, it inhibited respiration, giving signal (Δppm 
O2)T. Plotting [O 2] vs time yields curves resembling those in Figure 2.

Results
Spectrophotometry

Table 1 lists the Pelkin-Elmer Lambda 16 spectrometer readings 
from which the drug concentrations were chosen, [11,12] report their 
solubility.

Photo-degradation

Figures 3 and 4 show chromatograms of amoxicillin degradation 
by photolysis and by TiO2-catalyzed photo-degradation, they illustrate 
its sensitivity to the latter. After 30 min exposure to UV rays in the 
presence of catalyst is completely mineralized. Ciprofloxacin shows 
another trend, Figure 5 shows how drug concentration decreases with 
photolysis with different irradiation times and additional peaks due to 
degradation product formation. Active drug concentrations decrease 
rapidly with photo-catalysis, the by-products quickly disappear 
as irradiation progresses. Ciprofloxacin exposed to UV radiation, 
photolysis tests find rapidly decreasing drug concentrations, and after 
30 minutes’ irradiation it’s almost completely photo-degraded. After 1 
minute’s photo-catalysis, ciprofloxacin is almost completely degraded. 
Figure 6 shows results of photo-stability tests illustrating the The most 

   

Figure 1: Scheme of a Clarck-type electrode: a) electrode body; b) dielectric; c) 
Ag/AgCl-anode; d) Pt-cathod; e)  teflon housing; f) semipermeable membrane.
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Figure 2: Trend of the oxygen concentration over time, in the absence and in 
the presence of pollutant.

   

Figure 3: Photolysis of a solution of amoxicillin 10 mg/L at different time of 
irradiation.

   

Figure 4: Photocatalysis of a solution of amoxicillin 10 mg/L at different time of 
irradiation with the addiction of 0.01g TiO2.   

   

Antibiotic  λ max Concentration Water sol.  
T=25°C

Amoxicillin 195 nm 10 mg/L 4 × 103 mg/L
Streptomycin 

sulphate 194 nm 50 mg/L 50 × 103 mg/L

Erythromycin 192 nm 300 mg/L 2 × 103 mg/L
Ciprofloxacin 275 nm 3.75 mg/L 0.065 × 103 mg/L

Table 1: λ-max, concentration of the solutions used and water solubility.

Antibiotic  K 
(photolysis)

T1/2 
(photolysis)

K 
(photocatalysis)

T1/2 
(photocatalysis)

Amoxicillin 0.0037  min-1 
(±0.001) 186.2 min 0.433 min-1 

(±0.01)  1.6 min

Streptomycin 
sulphate

0.017  min-1 

(±0.01) 40.8 min 0.15 min-1 (±0.02) 4.55 min

Erythromycin 0.0159 min-1 
(±0.01) 43.49 min 0.038 min-1 

(±0.002) 18.18 min

Ciprofloxacin 0.107 min-1 

(±0.03) 6.47 min 3,187 min-1 

(±0.03) 0.22 min

Table 2: K: Kinetic constants calcolated by the model of Lagmuir-Hinshelwood.

Drug IAR% ± σ Drug
IAR% ± σ 

photocatalysis product
T=30 min 

IAR% ± σ 
photocatalysis

product
T=15 h 

 Amoxicillin (7.05 ± 0.06)% (46.25 ± 0.5)%  (0.40 ± 0.01)% 
Streptomycin (56.21 ± 1)%                  (7.6 ± 0.7)% (0.10 ± 0.02)% 
Erytromycin (80.31 ± 2)% (5.3 ± 0.9)%  (0.20 ± 0.03)%  
Ciprofloxacin (54.02 ± 1.1)% (89.05 ± 1.1)% (0.10 ± 0.01)%

Table 3: The results of the toxicity tests are shown in the chart. 

relevant results of the photostability tests for the four drugs are show 
in figure 6. It is evident that the difference between photolysis (blue) 
and photocatalysis (red) is outstanding in the case of Amoxicillin 
and Streptomycin. Formulating a kinetic model for heterogeneous 
photo-catalysis reactions is complex; multiple reactions are possible 
subject to many parameters [25,33]. Adsorption need be considered in 
addition to degradation reactions and account taken of the unknown 
photo-degradation mechanism. Both photolysis and photo-catalysis 
degradation are first order kinetic reactions; often the Lagmuir-
Hinshelwood model [16,18,34] accounts for our results.

0 /   –  ln C C k t= ×

Where C is drug concentration at a particular reaction time and C0 
the initial concentration.

The kinetic constant k in a first order reaction is obtained by 
plotting - ln C/C0 against time, its gradient giving the rate constant, 
K. Table 2 and Table 3 reports its value for every antibiotic subject to 
photolysis and photo-catalysis

Toxicity tests

Photo-degradation reduces both active principle concentrations 
and toxicity. We evaluate the percentage respiratory activity inhibition 
(IAR) generated from the pollutant relative to a blank, calculated using:

IAR%={1-(Δ ppm O2)T (Δ ppm O2)B}100

where: (Δ ppm O2)T = oxygen consumption when pollutant 
is present, corresponding to its inhibitory activity, (Δ ppm O2) B = 
oxygen consumption when pollutant is absent, corresponding to the 
blank.

Repeated respirometric observations were notably more 
reproducible when tablet thickness was controlled. It determines 
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the amount of yeast collected, influencing oxygen consumption and 
creating a jump in the respirometric curve. This standard deviation of 
1-2% ensures repeatability.

Table 3 compares the IAR values of solutions degraded in presence 
of TiO2 for 30 min and 15 h with those obtained by exposing yeast to 
solutions of the original molecules following incubation for ~ 3 hours.

Longer degradation times were needed for ciprofloxacin and 
amoxicillin to reduce toxicity to yeasts due to formation of toxic 
intermediates.

Table 3 Results of toxicity tests. IAR (inhibition of respiratory 
activity) of solutions of starting drugs and those exposed to TiO2 
catalyzed photo-degradation for 30 min and 15 h after three hours 
incubation.

Conclusion
• Ciprofloxacin is most easily photo-degraded, followed by 

amoxicillin, streptomycin and erythromycin, the antibiotic most 
resistant to the experimental conditions.

• In all cases, heterogeneous photo-catalysis is demonstrated to be 
a powerful way to remove drugs from water and more effective than 
photolysis.

•  Photo-degradation reaction products are shown to be less toxic 

than the original drugs, in certain cases longer reaction times are 
needed.

• Our research shows that complete drug abatement needs a 
combination of methods, emerging technologies need  to be assessed.
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