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Introduction 
Synthetic dyes have diverse applications in modern life, including 

but not limited to agriculture [1], food processing [2], hair colorings 
[3], leather tanning [4], medical [5], paper and pulp [6], research [7], 
textile industry [8] and many more. Synthetic dyes have such a great 
contribution to sophisticate human life that even we cannot imagine 
routine life without them. Roughly it is estimated that over 10, 000 
tons per annum dye is produced globally [9]. If their production and 
application could discharge up to 10% dyes in environment, still it will 
cause hazardous concerns of environmental pollution [10] due to their 
stability, toxicity [11] and /or fast reactivity. Much hyped commercial 
dyes have sufficiently attracted scientist across the world for pollution, 
degradation and toxicity investigations [9]. Dyes, used in research and 
medical sector have been paid poor attention in this context, compared 
to much used industrialized dyes. Although net consumption of dyes 
used in research and medical sector is comparatively lesser than textile, 
leather and paper industries but these dyes may even pose superior risk 
of toxicity, mutation [12] and teretogenesis. Biosafety levels [13] and 
material safety data sheets [14, 15] have been designed and followed 
to deal with hazardous dyes in laboratories. Since these synthetic dyes 
are quite stable and toxic, disposal of hazardous laboratory effluent 
and dye wastage carries a challenging task. Present communication 
discusses about treatment and toxicity concerns of Giemsa dye. It 
is one of the most used dyes in biotechnology research laboratories. 
Giemsa dye exhibit specificity to bind with nucleotides [16]. Giemsa 
dye is extensively used to stain nucleic acid as a non radioactive marker 
in biotechnology, cancer, cytogenetics, histology and pathology 
laboratories [17-19]. Although it is used as gold standard in various 
research and diagnostic applications [19, 20] but due to its hazardous 
properties it requires safe handling and disposal procedures. Giemsa 
dye polluted water is discarded into sink in various biochemical 
laboratories. Disposal of hazardous dyes into sanitary sewer or sink 
drain should not be permitted over their hazardous concerns. It is likely 
to pollute ground water resources and pose a threat to environment 
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while released from manufacturing units or laboratories. Several 
attempts have been made to degrade synthetic dyes by adsorption, 
coagulation [21], sedimentation, filtration, membrane technology 
[22], chlorination [23], AOPs [24], and biodegradation [25] but these 
have been diagnosed with high operational cost, toxic secondary 
pollutants, large amount of water and incomplete degradation [26]. 
Semiconductors and their conjugated nanoparticles are preferred over 
low operating cost and effective treatment [27] but it is also notable to 
observe if any changes occurred in water quality after photocatalytic 
treatment. Most of such photocatalytic treatment methodologies 
deal with semiconductors, their conjugates, initial dye concentration, 
catalyst doses, reaction temperature and light illumination/ exposure 
time, [28-30] but remain silent over wide varieties of water quality 
parameters and toxicity concerns. Photocatalytic treatment of dyes can 
generate even more toxic intermediates, so we recommend that design 
of experiment should always be enabled with bioassays [31] to check 
the efficacy of treatment. We have made a first ever attempt here to 
assess the risk of degraded Giemsa dye by bioassays and water quality 
analysis. Giemsa dye is photocatalytically degraded under sun light by 
TiO2 nanoparticles under constant conditions. Quality of treated water 
was evaluated by analyzing alkalinity, BOD, COD, Ca2+

,
 Mg2+

,
 NO3

-

, SO4
2-, hardness, temperature, turbidity and pH; and compared with 
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World Health Organization. HPTLC of treated waste water confirmed that photocatalyzed dye intermediates exhibited 
increased absorbance in visible range of spectrum. At pH 2 various investigated parameters were found to match 
WHO standards for drinking water. Environmental risk assessment reveals that treated water possessed toxicity at 
pH 7 and was not found suitable for irrigation and potable purposes. Beside photocatalytic treatment, waste disposal 
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standards for drinking water, World Health Organization [32]. Agar 
well diffusion assay has been performed to assess toxicity of treated and 
untreated water against E. coli. Since E. coli belongs to lower trophic 
level, it can profoundly influence energy pyramid and food chain in 
ecosystem. Seeds of Vigna radiata (L.) R. Wilczek were germinared 
in treated and untreated water to assess the probable hazardous risks 
to agriculture sector. The paper investigates whether TiO2 mediated 
photocatalytic treatment may be appropriate option to degrade Giemsa 
dye. 

Material and Method
Chemicals

Anatase TiO2 nano particles were kindly supplied by Chem Life 
Enterprises. Giemsa dye was purchased from Sigma Aldrich. Sodium 
fluoride, zirconium reagent, sodium arsenite, sodium azide, sodium 
iodide, Na2S2O3, eriochrome black T indicator, di phenyl amine 
indicator were purchased from Qualigens; murexide indicator, starch 
indicator, ortho phosphoric acid, ferrous ammonium sulphate, 
methanol were from Fisher Scientific; EDTA, K2Cr2O7, AgNO3, AgCl, 
Ag2SO4, FeCl3, MgSO4, HCl, NaOH were from Central Drug House.

Photocatalysis of Giemsa dye

A 100 ml solution of Giemsa dye (25 ppm) was prepared in tap 
water at different pH (2, 4, 6, 8, 10 and 12) to screen optimum pH for 
photocatalysis. Absorbance of these solutions was measured at λmax 
660.7 nm at 25˚C by using UV-Vis spectrophotometer (Jasco-630). 
The solutions were maintained in glass bottles (without lid) under sun 
light exposure (3000 Lux/h, Metek digital lux meter 101 b, terrestrial 
coordinates: 18.15°N 74.58°E) for 4 h with suspended TiO2 nanoparticles 
(1000 ppm; without stirring) for photocatalytic degradation with 
control. Control was used to check solar assisted dye degradation for 
comparative analysis. Treated water was centrifuged to sediment the 
mineralization at 4000g for 5 minutes (REMI cooling centrifuge C 
24). Supernatant was analyzed for optical density at λmax 660.7 nm at 
25˚C temperature to assess photocatalytic degradation of Giemsa dye 
at different pH (2, 4, 6, 8, 10, and 12). The pH at which maximum % 
photocatalytic efficiency recorded, was considered as optimum pH. % 
photocatalytic efficiency was derived as 100(A-B)/A, where A and B 
were OD for untreated and treated water.

Photocatalytically treated and untreated water samples were 
analyzed at optimum pH for alkalinity, BOD, COD, Ca2+

,
 Mg2+

,
 NO3

-

, SO4
2-, hardness, temperature, turbidity and pH [33]; and compared 

with standards for drinking water, World Health Organization [32]. 

HPTLC 

Treated and untreated water samples were analyzed by High 
Performance Thin Layer Chromatography (CAMAG). Prewashed 
(methanol, dried overnight at 60˚C) silica gel plate (HPTLC Silica gel 
60 F254 aluminium sheet; Merck) was used for chromatography. Vertical 
Chromatography was executed with methanol (Fisher Scientific, 99.5% 
purity) as mobile phase. Chromatographic chamber was pre-saturated 
for 0.5 h with solvent. After attaining 80% of migration distance, 
TLC plate was dried on the TLC plate heater at 60˚C for 10 minutes. 
CAMAG TLC Scanner 3 (winCATS software) was used for scanning 
the chromatogram. The parameters were set as slit dimension 6 mm 
x 0.45 mm, scanning speed 20 mm/s and data resolution 100 µm/step. 

Bioassays 

Agar well diffusion assay was performed to assess toxicity associated 

with treated (10 ppm dye + 1000 ppm TiO2) and untreated water (10 
ppm dye). Microbial culture of E. coli VSBT.T.12.06 was procured from 
Microbial Culture Collection (MCC), V.P. School of Biotechnology, 
Baramati, Pune, Maharashtra, India. Bacterial growth curve of E. coli 
VSBT.T.12.06 was determined with the aid of optical density at 600 nm 
(Jasco 630 Spectrophotometer) to pick up log phase bacteria for assay. 
Treated water was centrifuged at 4000g for 5 minutes and supernatant 
was used for the experiment with tetracyclin as positive control. Sterile 
(alcohol + flame) cork borer and spreader were used for experiments. 
100 µl inoculum of E. coli VSBT.T.12.06 (log phase, 1x105 cfu/ml) was 
seeded on to nutrient agar (Hi media) poured petri plate. 40 µl samples 
were poured into agar wells; experiments were done in triplicate for 24 
h incubation in dark at 37˚C temperature. Zone of inhibition around 
the well was considered as antibacterial activity [34]. 

80 seeds of Vigna radiata (L.) R. Wilczek were allowed to germinate 
for 2 days in control (water), untreated (10 ppm, pH 2), treated (pH 
1.9) and treated water adjusted at pH 7 to observe the impact upon 
irrigation. Observed results were categorized as germinated seeds, un- 
germinated seeds and ‘inhibited (partial)’ germination.

Results and Discussion
Photocatalysis

Maximum 73.43% photocatalytic degradation could be achieved 
at pH 2 by suspended nanoparticles of TiO2 (Table 1). At other 
experimented pH, interaction between TiO2 and dye seems to be 
minimal due to the absence of adequate electrostatic forces. Maximum 
9.56% photolytic efficiency was observed in negative control at pH 8. 
Position of conduction and valence bands are influenced by pH. pH 
influences surface charge on catalyst hence, size of catalyst aggregates 
and isoelectric pH are affected [35]. Thus photocatalytic degradation 
efficiency is evidenced to be affected by pH. Incomplete degradation 
at different pH can yield diverse intermediates. Photocatalyzed 
intermediates seems to have slightly different functional groups [36] 
compared to parent dye, hence a minor decrease in pH is noted along 
with altered cationic and anionic concentration (Table 2). A change in 
molecular signature (absorbance spectra) is noted after photocatalytic 
treatment indicating the degradation of Giemsa dye. Comparative 
analysis of HPTLC densitogram reveals that numbers of peaks are 
increasing upon addition of TiO2 nanoparticles in Giemsa dye water 
sample (Figure 1a and 1b). After photocatalytic degradation of Giemsa 
dye numbers of peaks in HPTLC densitogram are decreasing indicating 
that few degraded dye products might have sedimented or evaporated 
from treated water (Figure 1c). Numbers of peaks in densitogram 
(Figure 1c) illustrate the reason behind the decrease in turbidity of 
photocatalytically treated water (Figure 1c). Comparative analysis of 
HPTLC results show that photocatalytically degraded dye products 
exhibit the increased absorbance in visible range of electromagnetic 
spectrum (Figure 2a, 2b and 2c). Further research may be focused on 
these degraded dye products to decolorize treated waste water. Most 
of the compounds in all reported chromatograms possess low Rf 
values in methanol as mobile stream. Water quality is compared with 
standards for drinking water, World Health Organization (Table 2). 
At high temperature charged chemical species may be recombined 
and adsorption of dye intermediates may be inhibited on catalyst [37]. 
Optimum reaction temperature for photomineralization is reported to 
be in the range of 20-80˚C [38]. Dissolved oxygen [39] and stirring 
affects the photocatalytic efficiency. Oxygen can serve as electron sink 
to trap the excited conduction-band electron from reactive oxygen 
species. Dissolved oxygen is proposed to cleave aromatic ring [40] of 
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dye molecules. Solar irradiation consisting UV-A (315 to 400 nm; 3.10-
3.94 eV) and UV-B (280 to 315 nm; 3.94-4.43 eV) provide sufficient 
photons for the activation of TiO2 catalyst [41]. UV-C (100 to 280 nm) 
is absorbed by earth’s atmosphere and does not reach to earth surface 
however; UV lamp may be employed for UV-C irradiation. Fujishima 
and associates claimed that initiation of TiO2 photocatalytic reaction 
rate is not critically dependent on light intensity, since a few photons 
of energy (1µWcm-1) can sufficiently induce the surface reaction 
[42]. Doped TiO2 have been investigated for effective utilization of 
photoillumination [43-45]. Doping introduces impurity in the band 
gap of TiO2 and thus, reduces the photonic energy requirements. 
We investigated with justified ratio of Giemsa dye and catalyst to 
prohibit photocatalyst deactivation [46]. Oxidants and immobilization 
techniques have been investigated for photocatalytic treatment 
efficiency [47-50]. Photocatalyzed dye intermediates can cause turbidity 
in reactor leading to decreased photocatalytic efficiency [51]. Moreover, 
inorganic ions can also influence photocatalytic efficiency [52-54]. Salt 
formation in reactor diminishes colloidal stability resulting decreased 
photocatalysis [55]. 

Environmental risk assessment 

Agar well diffusion assay confirms no antibacterial activity of 
treated and untreated water (10 ppm) against E.coli VSBT.T.12.06. It 
indicates that reference strain of bacteria (model aquatic organism) 
is quite tolerable to Giemsa dye and its photocatalyzed products at 

10 ppm concentration. Reactive oxygen species and oxidative/ toxic 
intermediates in treated water can damage bacterial cell leading to 
lipid peroxidation and homeostasis impairment [56]. Due to fast repair 
mechanism bacteria could better adapt themselves in changed chemical 
climate. TiO2 photocatalyst have earlier been reported to inactivate 
E.coli [57, 58] and cause ecotoxicity [59] but here bacterial incubation 
was carried out in dark (absence of photoillumination) so there were 
no chances of photocatalytic disinfection. Cytochrome P450s genes 
have earlier been reported to metabolize xenobiotics [60]. Higher doses 
should also be checked for further evaluation since concentration of 
Giemsa dye in laboratory disposed waste may even be higher. Ethyl 
red, methyl red, reactive red and other azo dyes have earlier been 
reported to be degraded by Escherichia coli and other microbes [61-
63]. Bioaccumulation of photocatalyzed Giemsa dye products must be 
investigated further because these may enter in food chain and affect 
human health.

pH OD Untreated water % Photocatalytic 
efficiency 

%Photolytic efficiency 
(control)

2 0.64 73.43 6.40 %
4 0.32 44.58 0.96 %
6 0.25 29.68 0.43 %
8 0.34 62.59 9.56 %
10 0.30 46.13 2.47 %
12 0.15 24.38 5.81 %

Table 1: TiO2 assisted photocatalytic degradation of Giemsa dye at different pH.

Table 2: Quantitative analysis of water quality.

Parameters Untreated water Treated water WHO Standard 
Alkalinity 266.5 ppm 116.6 ppm 200 ppm
BOD 4.3 ppm 1.8 ppm 6 ppm
Ca2+ 28.0 ppm 20.0 ppm 75 ppm
Cl- 213 ppm 165.6 ppm 200 ppm
COD 20.2 ppm 9.3 ppm 10 ppm
Hardness 381.3 ppm 296 ppm 100 ppm
Mg2+ 5.06 ppm 2.02 ppm 30 ppm
NO3

- 2.33 ppm 1.55 ppm 50-100 ppm
SO4

2- 38.73 ppm 22.70 ppm 200 ppm
TDS 111 ppm 99 ppm 500 ppm
pH 2 1.9 6.5-8.5 
Temperature ˚C 34.6 41.1 Not available

Table 3: Seed germination in Vigna radiata (L.) R. Wilczek after 2 days.

Culture medium pH Germinated Un-germinated 
Inhibited 
(partial) 
germination 

Tap Water (Control)  7 95% 3.75 % 1.25 %
Giemsa dye (10 ppm, 
untreated) 2 0 % 60 % 40 %

Giemsa dye(10 ppm, 
photocatalytically treated) 1.9 85 % 15 % 0 %

Giemsa dye(10 ppm, 
photocatalytically treated) 7 0 % 50 % 50 %

Figure 1a: HPTLC Densitogram at 450 nm for Giemsa dye.

Figure 1b: HPTLC Densitogram at 450 nm for Giemsa dye + TiO2.
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Seed germination assay confirmed delayed germination in Vigna 
radiata (L.) R. Wilczek seeds exposed with dye samples (Table 3). 
Photocatalytic treatment of dye improved the seed germination 
chances (45%) but at pH 7 degraded dye products seem to possess 
toxicity/ hazardous nature resulting in less germination of seeds. pH 
can influence permeability of molecules through cell membrane. It 
indicates that photocatalyzed products are being assimilated in seeds 
and these products are interfering in normal development of seedlings 
[64]. At pH 7 these degraded products may inhibit gene expression 
via DNA interaction and must be investigated for nucleotide binding 
specificity if any. Deformity in seedlings could not be reported at this 
early developmental stage. Despite, several water quality parameters are 
in accordance with World Health Organization’s standards for drinking 
water but such treatment methodology cannot be recommended for 
irrigation purpose at this stage due to bioaccumulation of photocatalyzed 
Giemsa dye and delayed seed germination. These seedlings must 
further be analyzed for bioaccumulation of photocatalyzed Giemsa dye 

sample which is likely to enter in food chain affecting human health. 
We recommend that photocatalyzed dye intermediates should further 
be degraded by genetically modified organisms and ecotoxicity of 
nanoparticles should be evaluated before treated water is discharged 
from research laboratories.
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