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prevention, early detection, and monitoring the progression of diseases 
[13,14]. With high throughput/high resolution mass spectrometry and 
NMR techniques as well as various statistical models, many biomarkers 
in human disease were successfully identified to differentiate patients 
and health control groups, or to predict death [15]. It is very critical 
for the pharmaceutical industry to find biomarkers for disease and 
to indicate how people respond to a drug. Biomarkers can be used in 
predicting therapy response and as surrogate end points for clinical 
trials [16]. In one study, five metabolites were detected differently 
between the non-invasive tumors and the invasive tumors in gastric 
cancer patients, suggesting the selected tissue metabolites could 
probably be applied for clinical diagnosis of gastric cancer [17]. Many 
other applications of metabolomics in biomarker discovery have been 
succinctly summarized in several reviews [18,19].

Drug Target Identification & Validation
Since the biochemical bases of many diseases come from the 

activity of particular enzymes, the pharmacometabolomics profile 
not only diagnose disease, but also reveal new drug targets and 
explore new treatment strategies. The alterations of cellular metabolic 
stages describe combination changes of genome, transcriptome and 
proteome. Therefore, pharmacometabolomics is a complementary tool 
for drug target identification and validation. In a serum metabolomic 
analysis, Chen et al. identified stearoyl-CoA desaturase 1 (SCD1) and its 
related lipid species which may serve as potential targets for treatment 
of inflammatory diseases [20]. 37 genetically determined metabolite 
traits were reported with strong association for various diseases [21]. 
The identification of associated metabolic traits may generate many 
new hypotheses for biomedical and pharmaceutical research. Among 
these genes, SLC16A9 (MCT9) was demonstrated as a carnitine efflux 
transporter responsible for carnitine efflux from absorptive epithelia 
into the blood [21]. Wei conducted a target-based metabolomics 
study to characterize metabolic response of Huh7.5 cells to genomic 
perturbation of HIF-1. The results identify a new therapeutic target by 
confirming HIF-1’s regulatory role in tumor energy metabolism [22]. 

ADMET Screening
ADMET (absorption, disposition, metabolism, elimination and 

*Corresponding author: Dr. Zhen Yang, University of Houston, Texas Medical 
Toxicology, 7707 Fannin Street, Suite 290, Houston, TX, 77054, USA, E-mail: 
zhen@texasmedtox.com

Received September 18, 2012; Accepted September 18, 2012; Published 
September 25, 2012

Citation: Yang Z, Marotta F (2012) Pharmacometabolomics in Drug Discovery 
& Development: Applications and Challenges. Metabolomics 2:e122. 
doi:10.4172/2153-0769.1000e122

Copyright: © 2012 Yang Z, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Pharmacometabolomics in Drug Discovery & Development: Applications 
and Challenges
Z. Yang1* and F. Marotta2

1Texas Medical Toxicology, Houston, USA
2ReGenera Research Group for Aging Intervention, Milan, Italy

Introduction
Metabolomics, a relatively new Omics platform, investigate small 

molecular metabolites by revealing any specific biomarker(s) in 
human disease or certain metabolism pattern changes after genetic 
and environmental intervention. It provides a direct read out of 
the metabolic state of an individual which cannot be obtained from 
transcriptomics and proteomics [1]. These small molecules are the final 
products of cellular regulatory processes and may reflect the in vivo 
metabolism phenotype controlled by both genotype and xenobiotics 
including: environmental factors, diet and drugs. Metabolomics 
have been successfully applied in various research and clinical areas 
including: early diagnosis of diabetes [2], cancers [3], cardiovascular 
diseases [4], neonatology [5], phytotherapy [6] and even human 
nutrition research [7]. 

Recently, the concept of pharmacometabolomics is mentioned 
more frequently as an emerging discipline to study the effect of drugs 
on the whole pattern of small endogenous molecules and in applying 
the profiles of metabolomics for drug development. For the latter part, 
metabolomics is majorly used to differentiate patients into responder 
or non-responder groups in an effort to decrease large inter-individual 
variation in clinical trials [8,9]. It is a novel approach that combines 
metabolite profile and chemo-metrics to model and predict drug 
targets, efficacy, pharmacokinetics and toxicity on both individual and 
population basis [8]. It attracts many scientists’ attention because of 
its intrinsic advantages and promising potentials in drug discovery 
and development [1]. Considering personalized drug treatment is the 
desired goal for current drug development, pharmacometabolomics 
provide an effective and inexpensive strategy to evaluate drug efficacy 
and toxicology, which may make personalized medicine realistic both 
from scientific and financial perspectives [10,11]. Furthermore, the 
FDA also realized that metabolomics coupling with other “Omics” 
approaches could be a valuable tool in evaluating general toxicology 
and could eventually replace the use of animals after addressing certain 
challenges [12].

Drug discovery and development traditionally relied on various 
genotype cell/animal models for target identification and validation. 
With in-silico modeling (i.e., QSAR or ligand-receptor models) in 
rational drug design, compounds are synthesized and screened for 
potency and toxicity. Later, time-consuming ADMET (absorption, 
distribution, metabolism, elimination and toxicity) studies are 
performed among promising compounds to further screen and 
identify lead compounds. After optimizing the dosage form and dose 
regimen of the API, lengthy and costly clinical trials are conducted 
to provide final evaluation. After several years of development, 
pharmacometabolomics now provide seamless incorporation to each 
individual step in drug discovery and development as shown below.

Potential of Diagnosis and Biomarker
The main application of metabolomics lies in the discovery of 

biomarkers, which could function as a diagnostic tool for cancer 
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toxicity) could serve as a screen and optimization step in drug discovery 
and development. The drug candidates with unfavorable ADMET 
properties (i.e., very poor solubility, extremely low bioavailability, 
general toxicity) usually failed during the development phase. On the 
other side, the lead compounds may obtain optimized formulation or 
dosage design to improve its efficacy and decreased toxicity with good 
understanding of these biopharmaceutical properties. Drug metabolism 
is an important activation (for prodrug) or detoxifying route in vivo 
to access drug’s efficacy and toxicity. It determined drug candidate’s 
bioavailability, pharmacokinetics and pharmacodynamics [23]. 
Coupling with various transporters, drugs including natural compounds 
may go through extensive metabolism after administration [24,25] and 
may cause large variations of pharmacokinetics and bioavailability 
in animal and clinical studies [26,27]. Pharmacometabolomics now 
provides a faster, simpler, less invasive approach to characterize 
biopharmaceutical properties and toxicity as well as revealing their 
mechanisms. In one study, NMR derived pharmacometabolomic 
analysis showed significant difference of cellular response at high 
and low doses of docetaxel in MCF7 breast cancer cells [28]. The LC/
MS/MS based pharmacometabolomic approach applied to cisplatin’s 
cytoxotixicty in human lung cancer cell lines was also reported [29]. 
These results indicated that the efficacy of pharmacometabolomics to 
evaluate cytotoxicity of various pharmaceutical ingredients and this 
has been widely accepted [22]. Pharmacometabolomic phenotyping 
also reveals different responses to xenobiotics in animals. Clayton first 
demonstrated that a pre-dose metabolic profile of urine could predict 
the toxicity and metabolism of paracetomol in rats [8]. Two classical 
experimental models demonstrated that pre-dose urinary metabolic 
profiles had strong association with post-dose pharmacological 
outcomes [30].

Applications in Clinical Studies
As mentioned above, increasing numbers of studies showed 

practical values of pharmacometabolomics in ADMET and predicted 
individual drug response and variation. Pharmacometabolomics have 
been widely applied in clinical studies [31]. Trupp et al. [32] found 
that metabolite profiling can successfully separate patients into two 
response groups and could predict LDL-cholesterol response related 
to simvastatin treatment. Phapale et al. [33] evaluated the potential 
of a metabolic phenotype to predict individual variation in the 
pharmacokinetics of tacrolimus. Using four metabolites, one could 
successfully predict the plasma AUC (area under concentration-
time curve) of tacrolimus in individualized PK. The results indicated 
that integrative pharmacometabolimic approach combined with 
the metabolic profiling of pre-dose urine can serve as a useful tool 
for personalized drug therapy. Clayton showed that p-cresol sulfate 
reversely correlate to the level of acetaminophen sulfonation in human 
urine and indicated the metabolism pathway of acetaminophen [34]. 
These studies demonstrate that monitoring small molecular metabolites 
in vivo is possible for the development of personalized health care.

Challenges of Pharmacometabolomics
Although pharmacometabolomics have been successfully applied 

in drug discovery and development, and are now widely used as 
complementary tools in understanding biological changes after a 
drug intervention or a gene knockout, it bears the same challenges as 
metabolomics faces right now [35]. There are three major challenges 
ahead in pharmacometabolomics. 

Firstly, accurate quantification of small molecular metabolites 

in cell, tissue, organ or whole organism is the cornerstone of 
metabolomics. For mass spectrometry based pharmacometabolomics, 
various analytical aspects including: sample preparation/stability, 
extraction recovery, carryover and matrix effects, choices of internal 
standards, and quality control should be systematically validated [36]. 
For NMR based pharmacometabolomics, the spectrum is generally 
very complex and difficult to interpret due to function-group based 
multiple peaks per analyte [22]. Therefore, the quality of the analytical 
data is very critical for both targeted and non-targeted approaches. We 
should always keep in mind that compromise and biases do exist when 
analyzing hundreds of metabolites in various matrix samples without 
efficient separation, adequate recovery and good reproducibility.

Secondly, selected cohort of samples and sample size should be 
large enough to confirm pharmacometabolomics results. One example 
is that there are some controversies about the biomarkers in prostate 
cancer [37]. The level of sarcosine was reported to show significant 
elevation in biopsy-positive patients in a high impact journal, 
indicating its potential to serve as a biomarker for prostate cancer 
[38,39]. However, an independent confirmation in larger cohorts of 
patients showed negative results for the value of urinary sarcosine as 
a biomarker for prostate cancer [37]. The underlying reasons may be 
compounding, but the selection of sample cohorts could significantly 
contribute to it.

Thirdly, one needs to pay attention to statistical strategies for 
avoiding false discoveries in metabolomics and related experiments. 
Many studies failed to take consideration of minimal statistical 
requirements to obtain true significance by multiple hypothesis 
testing, inappropriate choice of statistical modeling, and over fitting of 
experimental data [40]. The classical p-values, p<0.05, are too optimistic 
when multiple tests are done simultaneously. There is also a challenge 
of statistically modeling datasets with large numbers of variables, but 
relatively small sample sizes [35]. 

Overall, this editorial is meant to highlight that 
pharmacometabolomic approach can complement traditional drug 
discovery, develop processes to identify new pharmacological targets, 
facilitate drug efficacy and toxicity studies, as well as, reveal new 
insights into pharmacodynamic and pharmacokinetics. With rapid 
development of mass spectrometry, NMR techniques and various 
available statistical methods, pharmacometabolomic will play a more 
important role through drug discovery and development.
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