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To improve the health and quality of life of patients suffering from 
neural degeneration diseases or brain and spinal cord injuries, much 
research has been dedicated to the repairing and regeneration of neural 
tissues. Although allogenic grafts have no supply limitation, they often 
cause undesirable immune responses. Thus, autologous grafts are 
usually used to treat neural defects. However, the short life of nerves 
and a mismatch of nerve cable dimension between the donor graft 
and the receptor nerve limit its clinical applications [1]. Nerve tissue 
engineering has emerged as a highly promising alternative strategy to 
neural therapy, aimed at rebuilding the lesioned circuits of the central 
and peripheral nervous systems, while minimizing body’s immune 
responses with engineered nerves [2]. 

One focus in tissue engineering is the development and design of 
extracellular scaffolds that mimic natural extracellular matrix (ECM) 
to support three-dimensional (3-D) cell proliferation and tissue 
regeneration. A natural tissue scaffold comprises of nanofibrous 
materials that provide a nano-textured surface supporting cell adhesion, 
migration, signaling, and morphogenesis. In vivo, cells are surrounded 
by ECM that is characterized by a natural web of hierarchically organized 
nanofibers that play a vital role in directing cellular behaviors via cell-
surface interactions [3]. Cell-surface interactions can be controlled or 
regulated by varying the surface chemistry, mechanical properties, and 
topography. For nerve tissue engineering, nanomaterials have been 
increasingly used in developing nano-engineered scaffolds to regulate 
cell-surface interactions and promote neural regeneration following 
injury.

Carbon nanotubes (CNTs), which were first discovered in 1991 by 
Sumio Iijima [4], have been at the forefront of nanotechnology, because 
their unique physicochemical properties enable the development of a 
variety of miniaturized devices with remarkable performance. Recently, 
CNTs have also gained great attention for their potential as tissue 
engineering scaffolds. Carbon nanotubes, when used in nerve tissue 
engineering, exhibit many stimulating effects, including reestablishing 
the intricate connections between neurons, and guiding and enhancing 
the intrinsic capacity of the brain to reorganize in a controlled fashion 
via regulating the interactions between scaffolds and biological cell 
membranes [2]. The dimension, diameter and length of CNTs are 
analogous to those of the natural ECM proteins, including laminin and 
collagen [5]. The size, high electrical conductivity and aspect ratio, and 
large surface area of CNTs favor their interactions with distal dendrites, 
which promote nerve regeneration [2]. Also, CNT-based scaffolds can 
maintain structural integrity as they have similar mechanical properties 
to structural proteins found in natural ECM [5].  Recent research has 
shown that CNTs could aid nerve tissue regeneration and deliver 
drugs to repair damaged neurons associated with disorders such as 
epilepsy, Parkinson’s disease and even paralysis [6]. Moreover, the 
incorporation of CNTs in scaffolds provides electrical conductivity [7-
8], which may aid in directing cell growth. Several recent studies have 
shown that the use of an electrical field would aid bone regeneration, 
neural regeneration and wound healing [9-11]. Therefore, CNTs as 
nanofibrous scaffolds hold promises for enhancing the restoration of 
lost nerve functions. 

In addition to electrical conductivity, the ideal scaffold for nerve 
regeneration should also possess appropriate magnetic properties. 
Magnetic fields have profound effects on numerous biological 
processes. Pulse magnetic fields (PMFs) were found to stimulate 
nerve growth, regeneration, and functional recovery of peripheral 
nerves in both in vitro and in vivo studies [12]. Recent studies also 
showed that mechanical tension caused by a magnetic field played 
a role in stimulating axon growth in vitro and in vivo. For example, 
mechanical tension created by using super-paramagnetic nanoparticles 
in a magnetic field stimulated neurites outgrowth or axon elongation 
of neurons in the central nervous systems [13]. Therefore, scaffolds 
that can be manipulated in situ using magnetic fields according to the 
individual patient’s needs should have clinical applications, and thus 
are desirable.

In summary, biologically compatible scaffolds should have 3-D 
structures with nano-features mimicking microenvironments found in 
native extracellular matrices. For nerve tissue regeneration, they should 
also possess appropriate conductive and magnetic properties, which 
can be afforded by carbon nanotubes and magnetic nanoparticles, 
respectively. These next-generation tissue scaffolds can promote 
nerve cell proliferation and serve as a permissive bridge for nerve 
regeneration. With the development of these novel scaffolds for tissue 
regeneration, there is now considerable optimism among neurologists 
that effective clinical therapies are within reach.
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