

Personalized IBD Care: Omics, AI, Biomarkers

Sergei Petrov*

Department of Digestive Tract Sciences, Siberian Academy of Clinical Medicine, Novosibirsk, Russia

Introduction

This article dives into how using multiple 'omics' approaches, like genomics and proteomics, helps us really understand the complex mechanisms behind Inflammatory Bowel Disease. What this means is we can move toward more precise treatments tailored to an individual's specific disease profile, rather than a one-size-fits-all approach. It's about seeing the full picture of the disease to guide better care.[1]

Here's the thing: biomarkers are crucial for personalized IBD treatment. This paper explores existing and emerging biomarkers that can help predict disease activity, identify patients most likely to respond to specific therapies, and monitor treatment effectiveness. Essentially, these biological markers help us make smarter decisions for each patient.[2]

Therapeutic drug monitoring (TDM) plays a significant role in making biologic treatments for IBD truly personalized. This review highlights how TDM helps clinicians optimize drug dosing for individual patients, preventing both under-dosing, which means treatment might not work, and over-dosing, which can lead to side effects. It's about finding that sweet spot for maximum benefit and minimal harm.[3]

Understanding the genetic underpinnings of IBD is like having a map to personalized medicine. This article discusses how advances in genetics are shedding light on individual disease susceptibility and progression, helping us predict treatment responses more accurately. It shows us how far we've come in using genetic information to guide therapy choices.[4]

Let's break it down: Artificial Intelligence and Machine Learning are transforming how we approach IBD. This paper illustrates how these technologies can process vast amounts of patient data to identify patterns, predict disease flares, and personalize treatment strategies, bridging the gap between research findings and practical clinical applications. It's about smart data for smarter decisions.[5]

Diet plays a significant, though often varied, role in managing IBD. This review explores the current evidence for personalized nutrition approaches in IBD, acknowledging that what works for one patient might not work for another. It really highlights the importance of tailoring dietary recommendations based on individual patient needs and disease characteristics.[6]

The gut microbiome is a huge factor in IBD, and this article focuses on how targeting it can lead to personalized medicine. It discusses how understanding each patient's unique microbial composition allows for tailored interventions, like specific probiotics or dietary adjustments, to manage and potentially even treat IBD more effectively. It's about customizing therapies based on our internal ecosystem.[7]

This paper highlights how combining Artificial Intelligence with real-world patient data can create powerful clinical decision support systems for IBD. These systems can assist doctors in making personalized treatment choices by providing evidence-based recommendations, predicting outcomes, and improving overall patient care. It's about leveraging data to empower clinicians.[8]

Predicting how a patient will respond to biologic and small molecule therapies is a cornerstone of personalized IBD treatment. This systematic review synthesizes current knowledge on factors and methods used to forecast treatment outcomes, helping clinicians select the most effective therapy from the outset and avoid unnecessary trials of ineffective drugs. It's about getting it right the first time.[9]

Real-world data, collected from routine clinical practice, offers invaluable insights for personalizing IBD treatment. This review discusses how such data, distinct from controlled clinical trials, can inform treatment decisions by reflecting diverse patient populations and treatment settings. What this really means is we get a clearer picture of how treatments perform in everyday life, leading to more tailored care.[10]

Description

Personalized medicine in Inflammatory Bowel Disease (IBD) is a critical shift, moving beyond generic treatments to therapies tailored for individual patients. One major advancement in this field comes from multi-omics approaches, which integrate data from genomics and proteomics to deeply understand the complex mechanisms driving IBD [1]. This comprehensive view allows for the development of precise treatments that align with an individual's unique disease profile, signifying a move away from the traditional one-size-fits-all model towards more effective, patient-centric care.

Here's the thing: biomarkers are essential tools in this personalized treatment journey for IBD. Research highlights how existing and emerging biomarkers are instrumental in predicting disease activity, identifying which patients are most likely to respond to specific therapies, and diligently monitoring the effectiveness of ongoing treatments [2]. These biological indicators empower clinicians to make more informed and strategic decisions for each patient, optimizing outcomes. Furthermore, therapeutic drug monitoring (TDM) plays a significant role, particularly with biologic treatments. TDM helps clinicians fine-tune drug dosing for individual patients, which is crucial for avoiding both insufficient dosing, where treatment might fail, and excessive dosing, which can lead to adverse side effects. It's about striking the right balance to maximize therapeutic benefit while minimizing harm [3].

The genetic underpinnings of IBD offer a vital roadmap for personalized medicine. Advances in genetics are continuously illuminating individual susceptibility to the

disease and its progression, providing valuable insights that aid in predicting treatment responses with greater accuracy [4]. This progress underscores the growing capacity to leverage genetic information to guide precise therapeutic choices. In a similar vein, the gut microbiome represents another critical factor in IBD management. Understanding each patient's distinct microbial composition enables the creation of tailored interventions, such as specific probiotics or dietary adjustments, that can manage and potentially treat IBD more effectively. It's about customizing therapies based on the unique internal ecosystem of each individual [7]. Diet itself, though varied in its impact, is also a key area for personalization. Current evidence supports personalized nutrition approaches, acknowledging that dietary needs and responses differ significantly among IBD patients. This highlights the importance of crafting dietary recommendations that are highly specific to individual patient needs and disease characteristics [6].

What this really means is that advanced technologies are accelerating the move towards personalized care. Artificial Intelligence (AI) and Machine Learning (ML) are transforming how IBD is approached, processing vast datasets to identify patterns, predict disease flares, and customize treatment strategies. These technologies are crucial for bridging the gap between cutting-edge research and practical clinical applications, enabling smarter decisions through smart data [5]. Complementing this, the combination of Artificial Intelligence with real-world patient data is leading to powerful clinical decision support systems for IBD. These systems provide evidence-based recommendations, predict outcomes, and ultimately enhance overall patient care, empowering clinicians with better insights [8]. Predicting how patients will respond to biologic and small molecule therapies is a cornerstone of effective personalized treatment. A systematic review synthesizes current knowledge on factors and methods used to forecast these treatment outcomes, helping clinicians select the most effective therapy from the outset and avoid unnecessary trials of ineffective drugs. It's about getting it right the first time [9].

Lastly, real-world data, gathered from routine clinical practice rather than controlled trials, offers invaluable insights for personalizing IBD treatment [10]. This data reflects diverse patient populations and treatment settings, providing a clearer picture of how treatments perform in everyday life. Leveraging such evidence ensures that care is truly tailored, adapting to the nuances of each patient's journey and evolving disease state.

Conclusion

Inflammatory Bowel Disease (IBD) treatment is moving away from a one-size-fits-all approach towards personalized medicine. Multi-omics, like genomics and proteomics, reveal complex disease mechanisms, guiding tailored treatments for individual patient profiles. Biomarkers are crucial for predicting disease activity, identifying therapy responders, and monitoring effectiveness, enabling smarter decisions for each patient. Therapeutic Drug Monitoring (TDM) optimizes biologic drug dosing, preventing under-dosing or over-dosing, finding the sweet spot for maximum benefit and minimal harm. Genetic insights offer a roadmap to personalized medicine, shedding light on individual susceptibility and predicting treatment responses. Artificial Intelligence (AI) and Machine Learning (ML) process vast patient data to identify patterns, predict flares, and personalize treatment strategies, bridging research and clinical practice. Personalized nutrition also plays a significant role, with dietary recommendations tailored to individual needs and disease characteristics. Targeting the gut microbiome allows for customized interventions, like specific probiotics, based on unique microbial compositions. Combining AI with real-world data creates powerful clinical decision support systems, assisting

doctors with evidence-based personalized treatment choices. Predicting response to biologics and small molecules is key, helping clinicians select effective therapies early and avoid ineffective drug trials. Real-world data, collected from routine practice, offers invaluable insights into how treatments perform in everyday life, leading to more tailored care.

Acknowledgement

None.

Conflict of Interest

None.

References

1. N. Vande Casteele, R. Vongsa, L. Henckaerts. "Multi-omics to unravel disease mechanisms and guide precision medicine in inflammatory bowel disease." *Gastroenterology* 160 (2021):1980-1996.
2. S. Kostic, I. E. Kourtroubakis, K. H. Katsanos. "Biomarkers in inflammatory bowel disease: current and future perspectives on precision medicine." *Ann Gastroenterol* 35 (2022):457-466.
3. S. Varma, V. Agrawal, K. Gecse. "Personalized Biologic Treatment in Inflammatory Bowel Disease: The Role of Therapeutic Drug Monitoring." *Gastroenterol Clin North Am* 50 (2021):569-586.
4. J. Halfvarson, V. Kumar, L. Törkvist. "Genetics of inflammatory bowel disease: a road map to precision medicine." *J Intern Med* 292 (2022):749-762.
5. A. M. Alobaidi, B. Al-Judaibi, M. Chetty. "Artificial intelligence and machine learning in inflammatory bowel disease: from research to clinical practice." *J Transl Med* 21 (2023):524.
6. A. C. Marín, K. Tasiou, J. K. Limdi. "Personalized nutrition in inflammatory bowel disease: Current evidence and future implications." *World J Gastroenterol* 29 (2023):4078-4091.
7. E. Im, W. Lim, H. Ma. "Gut microbiota-targeted personalized medicine in inflammatory bowel disease." *J Transl Med* 21 (2023):422.
8. M. V. Lenti, E. Kvedaraite, G. Rogler. "Artificial intelligence and real-world data for patient care and clinical decision support in inflammatory bowel diseases." *United European Gastroenterol J* 10 (2022):1121-1130.
9. J. R. Allegretti, Z. Kassam, D. M. Faleck. "Predicting response to biologics and small molecules in inflammatory bowel disease: a systematic review." *Aliment Pharmacol Ther* 58 (2023):968-984.
10. M. Bortlik, R. Kupcova, M. Lukas. "Real-World Evidence in Inflammatory Bowel Disease: A Review of its Use for Personalized Medicine." *J Clin Med* 10 (2021):3676.

How to cite this article: Petrov, Sergei. "Personalized IBD Care: Omics, AI, Biomarkers." *J Inflamm Bowel Dis* 10 (2025):267.

***Address for Correspondence:** Sergei, Petrov, Department of Digestive Tract Sciences, Siberian Academy of Clinical Medicine, Novobirsk, Russia, E-mail: s.petrov@sacm.ru

Copyright: © 2025 Petrov S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Nov-2025, Manuscript No. jibdd-25-174849; **Editor assigned:** 04-Nov-2025, PreQC No. P-174849; **Reviewed:** 18-Nov-2025, QC No. Q-174849; **Revised:** 24-Nov-2025, Manuscript No. R-174849; **Published:** 29-Nov-2025, DOI: 10.37421/2476-1958.2025.10.267
