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Introduction
A process of symmetrical contraction and expansion of progressive 

waves on the walls of the channel which mix and transport fluid in a 
channel is termed as peristalsis. In several procedures of physiology 
and engineering, peristaltic flow concerns are broadly encountered in 
channel or tube. The applications of peristalsis covers swallowing food 
through the esophagus, urine transportation from kidney to bladder, 
assessment of chyme in gastrointestinal tract, ovum movement in the 
female fallopian tube, vasomotion of narrow blood vessels, movement 
of spermatozoa in human reproductive tract and water movement 
from ground to above branches of grown-up trees [1-4].

Peristaltic flows have many biological and industrial applications 
such as blood pumps in heart, lung machines and transportation of 
mordant fluids. For the viscous fluids, Lithium and Sharpio presented 
the earliest theoretical and experimental models for peristaltic transport 
[5,6]. Peristalsis during male reproductive system was examined 
experimentally and numerically by Srivastava, Gupta [7], Guha et al. 
[8] and Batra [9], where a peristaltic flow has been modelled in the vas 
deferens by considering it to be a non-uniform tube. Many modern 
mechanical procedures have been investigated on the primary of the 
peristaltic pumping for transporting fluids without internal moving 
parts, for example, the blood pump in the heart, lung machine and the 
peristaltic transport of noxious fluid in the nuclear industry. It was also 
clarified that in the case of hyperthermia, the tissue can be destroyed 
when heated upto 42°C−45°C. A mathematical model of peristaltic 
hydromagnetic flow in a tube for the Johnson-Segalman fluid has 
been studied by Hayat and Ali [10]. Hydromagnetic flow of fluid in 
a uniform pipe with variable thickness was investigated by Hakeem 
et al. [11]. Nadeem and Akbar [12] have studied the peristaltic wave 
of a non-Newtonian fluid in a non-uniform inclined pipe. Peristaltic 
transportation of a non-Newtonian fluid in an inclined channel was 
discussed by Vajravelu et al. [13].

Study of peristaltic flow in the presence of magnetic field has also 
achieved a lot of importance in daily life and engineering sciences. Some 
previous papers dealing with MHD flows of peristaltic are discussed 
[14-16]. Effects of MHD on the peristaltic flows for different modes of 

heat transfer like conduction, convection and radiations are reported 
[17-21]. For other studies regarding MHD flows, are can consult [22-
24]. The rate of heat transfer is dependent on the temperatures of the 
systems and the properties of the prevailing medium through which 
the heat is transferred. Different authors have discussed [25,26] the 
effect of force on the heat convection and mass transfer. Study of 
peristaltic flow in the presence of magnetic field has also achieved a 
lot of importance in daily life and engineering sciences. Some previous 
papers dealing with MHD flows of peristaltic are discussed [14-16]. 
Effects of MHD on the peristaltic flows for different modes of heat 
transfer like conduction, convection and radiations [17-21]. For other 
studies regarding MHD flows [22-24].

Since the first investigation done by the Choi [27], the study of 
nanofluids have attracted the attention of many researchers due to its 
tremendous applications in various fields of life such as biomedical 
devices, treatment of tumor, nuclear reactor, microchips, cooling, 
radiators and nanomedicines etc. Only few researches are available on 
the peristaltic flows of nanofluids [28-33]. Motivated by the above work 
the aim of present findings is to treatise the Sisko fluid and viscous 
dissipation effects with convective boundary conditions. The problem 
of the two-dimensional motion of non-Newtonian fluid inside a 
uniform horizontal with convective boundary condition is discussed. 
The governing equations for conservation of mass, momentum and 
heat equation have been simplified throughout the assumption of low 
Reynolds number and long wave length approximation. The modelled 
equations are solved analytically by homotopy perturbation method 
[34]. The physical features of pertinent parameters are discussed 
through graphs.
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Abstract
In the current paper, we have analyzed the peristaltic flow of non-Newtonian Sisko fluid with convective boundary 

conditions in a uniform tube. The effects of viscous dissipation are also taken into account. The governing equations 
of non-Newtonian fluid along with heat and nanoparticles are modelled and simplified by using low Reynolds number 
and long wavelength assumptions. The velocity equation is solved by utilizing the homotopy perturbation technique 
while the exact solutions are computed for temperature and concentration equations. The solutions depend on 
Brinkman number (Bκ) and Magnetohydrodynamics (M). The obtained expressions for the velocity, temperature 
and concentration profiles are plotted and the impact of various physical parameters are investigated for different 
peristaltic waves.
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This paper is structured as follows: In this paper, we discuss the 
details of the mathematical formulation. This  describes the proposed 
solution methodologies for the solution of the governing partial differential 
equations. This presented the analytical results and discussions. Finally, in 
the paper is concluded with a discussion on the results.

Mathematical Formulation
We have analyzed the peristaltic flow of an incompressible Sisko 

fluid in a uniform tube. The flow in the tube is sinusoidal wave along 
the wall with constant speed c. The wall of the tube are defined as,

( )2sinH a b Z ctπ
λ

 = + −  
 			                 (1)

The geometry of the problem is shown in Figure 1 where a is the 
radius of the tube at inlet.

b is the wave amplitude, λ represent the wavelength, c is the 
propagation speed and t is the time.

The fundamental equations of continuity, momentum, nanoparticle 
concentration are
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The transformation relation between the two Coordinate frames 
are
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The corresponding boundary conditions are defined as
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The constitutive equation for a Sisko fluid model is defined as
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We suppose for small Reynolds number Re << 1 and by the Long-
wavelength approximation δ << 1 the flow inside the passage is very 
slow. Therefore, neglecting the non-inertial terms we get
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where M is the Hartmann number, b represent the sisko parameter 
and ∈ the amplitude ratio (∈=a/b), Soret number is ST, Schmidt number 
is the SH and Brinkman number is

Bk

where
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Finally, in simplified form above equation can be written as
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Figure 1: A physical sketch of the problem.
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The pressure rise ∆p can be written as
1

0
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Velocities in terms of stream functions are defined as
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For the flow analysis, we have considered three waveforms, namely, 
sinusoidal wave, trapezoidal wave and mulltisinusoidal wave. The 
dimensionless equations can be written as

1. Sinusoidal wave

h(z)=1+∈sin(2πz)

2. Multisinusoidal wave

h(z)=1+∈sin(2mπz)

3. Trapizoidal wave
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4. Square wave
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Results and Discussions
In this section, we have analyzed the solution for physiological 

breakdown of Sisko fluid model with convective boundary condition 
in a uniform tube through graphs. We have presented the solution 
attained by HPM by framing velocity, pressure rise, pressure gradient, 
temperature, concentration and streamline graphs for diverse values 
of the parameters n (power law index) and b (fluid parameter) and M 
(magnetic hydrodynamics), κ (Biot number), Bk (Brinkman number), 
ST (Soret number), SH (Schmidt number) respectively. Figures 2-5 show 
that with the increase in b,Bk,M,κ temperature profile increases. From 
figure 5 it is seen that with the increase in κ temperature profile decreases. 
Figures 6-9 show that with the increase in b,Bk,M,ST concentration 
profile increases. From Figure 10 it is seen that with the increase in SH 
concentration profile decreases. Figure 11 shows that increases the value 
of M while the velocity profile in the centre of the tube decreases as well as 
it gets opposite behaviour nearest of the tube or near the peristaltic wave. 
Figures 12 and 13 show that shear stress gets increasing function in the 
region (0.5 ≤ r ≤ 0) whereas it get opposite behaviour in the region (−1 ≤ r 
≤−0.49). Figure 14-19 show the pressure rise (versus flow rate) for diverse 
value of M,b,. From Figure 14, it is depicted that by increasing value of M 
pressure rise increasing in the region (Q ∈ [−2,0.5]) whereas reflux occur in 
the last. The retrograde pumping region can also be seen in Figure 14 when 
Q < 0 and ∆p > 0 and free pumping region can be seen when Q = 0 and 
∆p = 0. Moreover, augmented pumping region can also be seen in Figure 
14 when Q > 0 and ∆p < 0. From Figures 16 and 18 it is seen that with the 
increase in pressure rise decreases in the region (Q ∈ [−2,−0.4]) whereas 
reflux occur in the last. Figures 15, 17 and 19 show the friction force for 
diverse values of M,b,. From these figures it is depicted that the friction 
forces have an opposite behavior as compared to pressure rise.

Figures 20-22 describe the behavior of pressure gradient for 
different waveforms like Sinusoidal, multisinusoidal, trapezoidal. 
Figure 20 describe that increasing value of the pressure gradient 
decreases in the region (0 ≤ Z ≤ 0.5) and increases in the region (0.6 ≤ 
Z ≤ 1) and reflux occur in the region (1.1 ≤ Z ≤ 1.5).
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The corresponding boundary conditions are defined as
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Solution Methodology
Since the resulting equation of the above boundary value problem 

is non-linear. Thus it is appropriate homotopy perturbation method 
to solve eqn.(16), The homotopy perturbation method for eqn. (16) is 
defined as
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We choose linear operator 
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satisfy the required boundary conditions are
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where initial guess is w10 and embedding constant is q ∈ [0;1]. 
According to HPM, we solve

w(r,q)=w0+qw1+q2w2+q3w3+...

p(r,q)=p1+qp2+q2p3+q3p4+...

The velocity field for q→1 takes the form
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The exact solutions for the temperature and concentration 
satisfying the relative boundary conditions are directly written as:
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σ =A37(r4 − h4)+A38(r4 − h4)+A39(r5 − h5)+A40(r5 − h5)+A41(r6 − h6)

+ A42(r6 − h6)+A43(r6 − h6)+A44(r7 − h7)+A45(r7 − h7)+A46(r7 − h7)

+ A47(r8 − h8)+A48(r8 − h8)+A49(r8 − h8)+A50(r9 – h9)+A51(r9 – h9)+ 
A52(r10 − h10)+A53(r11 − h11).				               (21)

[ ]544

16dp F A
dz h

= +
−

				                (22)

Using Mathematica the constants A1,A2,...,A54 can be calculated 
from eqn. (22).

Flow rate in the dimensionless form can be written as
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Figure 2: Effect of b on θ. Figure 5: Effect of κ on θ.

Figure 3: Effect of Bk on θ. Figure 6: Effect of Bk on σ.

Figure 4: Effect of M on θ. Figure 7: Effect of b on σ.
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Figure 8: Effect of M on σ. Figure 11: Effect of M on W.

Figure 9: Effect of ST on σ. Figure 12: Effect of b on ∇p.

Figure 10: Effect of SH on σ. Figure 13: Effect of b on F0.
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Figure 14: Effect of ε on ∇p.

Figure 15: Effect of ε on F0p.

Figure 16: Effect of M on ∇p.

Figure 17: Effect of M on F0.

Figure 18: Effect of b on 
 dp

dz

Figure 19: Effect of M on 
 dp

dz
.
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Figure 20: Effect of ε on 
 dp

dz
. Figure 23: Effect of Trapezoidal wave.

Figure 21: Effect of Mulltisinousoidal wave. Figure 24: Effect of b on Srz.

Figure 22: Effect of Square wave.

Figures 21-23 show that the behavior for different values of by 
considering the multisinusoidal wave, trapezoidal. Figures 24 and 25, 
it is depicted that by increasing value of b,M pressure rise increasing. 
Figures 26-29 illustrate the streamlines for different wave shapes. It 
is distinguish that the streamlines of the flow are affected in a related 
behavior by increasing the value of ∈. In fact it is pragmatic that the 
strength of trapped bolus appear in the wider part of the tube decreases 
by increasing the value of ∈.

Conclusion
We have analyzed the peristaltic flow of non-Newtonian Sisko fluid 

with convective boundary conditions in a uniform tube. The viscous 
dissipation effects are also taken into account.

The main outcome of the present study is concisely as follows:

•	 Exact solution is premeditated for concentration field and 
temperature profile,



Citation: Shaheen A, Asjad MI (2018) Peristaltic Flow of a Sisko Fluid over a Convectively Heated Surface with Viscous Dissipation. J Appl Computat 
Math 7: 402. doi: 10.4172/2168-9679.1000402

Page 8 of 9

Volume 7 • Issue 3 • 1000402J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Figure 26: Streamlines for sinusoidal. Figure 29: Streamlines for trapezoidal wave.

Figure 27: Streamlines for multisinusoidal.

Figure 28: Streamlines for square wave.

•	 The temperature profile is enhanced corresponding to 
increasing values of parameters b,M,Bk and decreases by 
increasing the values of κ,

•	 The concentration field is increases by increasing the values of 
b,M,Bk and decreases by increasing the values of SH,

•	 The pressure gradient increases with the increasing value of b,M,

There is an opposite behavior between pressure rise and the 
frictional forces.
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