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Abstract
The traditional intraoperative ventilatory settings (tidal volume > 10 ml/kg ideal body weight) can be harmful even 

in patients with healthy lungs. In the operating theatre, safe anesthesia and optimization of oxygen delivery should 
be achieved while minimizing the deleterious effects of surgical trauma and avoiding iatrogenic complications. This 
review examines the mechanisms of perioperative lung injuries and particularly the injurious effects of mechanical 
ventilation. Protective lung strategies are discussed using a physiological approach, being mainly focused on the 
surgical patients with “healthy” lungs.
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Introduction
Currently, the incidence of postoperative pulmonary complications 

(PPC) far outnumbers cardiovascular complications [1]. They 
vary from 10% to 70%, depending on their definition, study design 
(retrospective or prospective), the heterogeneity of patient populations 
and the type of procedure [2]. In thoracic surgery, the main causes of 
perioperative deaths have now shifted from cardiovascular to infectious 
and pulmonary complications [3,4]. Pulmonary morbidity has also 
been associated with increasing health care costs and poor outcome as 
reflected by prolonged hospital stay, (re-)admission in intensive care 
units and reduced long-term survival [5,6]. 

Transient and self-limiting impairments in gas exchange should 
be considered as part of the anesthesia emergence period and as the 
physiological response to surgery. Most of the patients undergoing 
cardiothoracic or abdominal operations present some degree of 
hypoxemia and diffuse micro-atelectasis that will barely impact 
on the postoperative clinical course. In contrast, pleural effusions, 
sustained bronchospasm, lobar atelectasis or hypoxemia unresponsive 
to supplemental oxygen may forecast serious adverse events such 
as bronchopleural fistula, pneumonia, acute lung injury (ALI) or 
respiratory failure [7].

Predictive factors of PPCs include patient-related factors (e.g., 
chronic obstructive pulmonary disease [COPD], advanced age, poor 
nutritional status, decreased exercise tolerance, heart failure) and intra-
operative related factors (i.e., emergency surgery, upper abdominal 
and intra-thoracic procedures, duration of anesthesia, presence of 
a nasogastric tube, ventilatory settings, fluid balance) [2,8]. These 
procedure-related factors are much more amenable to modification 
than preexisting chronic diseases. 

In an effort to standardize the reporting of adverse perioperative 
events, Dindo and coll. [9] have validated a 5-grade scoring system 
based on the therapeutic consequences and residual disabilities 
in relation to surgical operations. Grade I complications entail 
any deviation from the normal postoperative course with no need 
for medical interventions (except a slight increase in inspiratory 
oxygen fraction [FIO2] or lung recruitment maneuvers). Grades 
II and III complications require non-invasive ventilatory support, 
pharmacological treatment (e.g., bronchodilators, diuretics) or specific 
interventions (e.g., fiberoptic bronchoscopy, thoracic drainage). Grade 
IV includes life-threatening complications (single-or multiple organ 
failure) requiring ICU admission and/or mechanical ventilation.

Mechanisms of Perioperative Pulmonary Injuries
Atelectasis

Collapsed lung areas or atelectasis develop in about 90% 

anaesthetized patients, irrespective of ventilatory control (spontaneous 
or mechanically supported) and of anesthesia type (intravenous agent, 
volatile anaesthetics or, combined general anesthesia and regional 
block) [10]. Atelectasis formation predominantly results from the 
reduction of lung volumes and from deficient or abnormal synthesis 
of surfactants that occur during anesthesia and could persist or even 
worsen after completion of the surgical procedure. 

By changing from upright to supine position, the functional 
respiratory capacity (FRC) is decreased by 0.8-1.0 L and a further 
reduction of 0.4-0.5 L occurs after the induction of anesthesia owing to 
the relaxation of the respiratory muscles and the decrease in thoracic 
elastic recoil [11,12]. Ventilation with enriched oxygen mixture (FIO2 
> 80%) promotes the development of atelectasis as a result of complete 
absorption of O2 in poorly ventilated lung regions. Depending on the 
duration of mechanical ventilation, 3% to 40% of the total lung volume 
collapses in the dependent zone resulting in impaired gas exchange 
intraoperatively [13]. Moreover, atelectasis impairs the clearing of 
bronchial secretions, it impedes lymphatic flow and may become a 
focus of infection in the postoperative period. 

In obese patients, the healthy lungs are compressed by the “heavy” 
weight of the chest/abdominal wall, resulting in further aggravation 
of the restrictive pulmonary syndrome associated with anesthesia and 
surgery. Likewise, in acute lung diseases and heart failure, ongoing 
inflammation and fluid accumulation within the lung interstitium and 
the alveolar space, tissue tend to expel air/gas out of the alveoli and 
thereby promote the development of atelectasis.

Ventilator-induced lung injuries (VILI)

During spontaneous ventilation (at rest), tidal volume (VT) and 
transpulmonary pressure (Ptp) in healthy subjects vary within tight 
limits of 4 to 6 ml per kg of ideal body weight (IBW) and 4 to 8 mmHg, 
respectively.

Surprisingly and for decades, anaesthetists have been taught to 
apply “unphysiological” large tidal volume (10 to 15 ml/kg) to prevent 
the development of atelectasis.
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Mechanical inflation of “physiological” low VT (4-8 ml/kg) 
produces higher Ptp and may cause subtle lung injuries over several 
hours: neutrophil infiltration, rupture of alveolar-bronchial attachment 
and chondroitin-sulfate proteoglycan fragmentation in the extra-
cellular matrix (ECM) [14]. When a larger VT is delivered (with or 
without increased Ptp) over a prolonged time period, auto regulatory 
local responses are triggered in an attempt to maintain low pulmonary 
compliance while protecting the ECM against fluid overload (e.g., 
further macro-molecular fragmentation, activation of matrix metallo-
protease and up regulation of collagen synthesis in the ECM) [15-17]. 
In addition, the cyclic stretch and hyperoxic exposure of lung epithelial 
and endothelial cells have been shown to trigger the formation of 
reactive oxygen/nitrogen intermediates (ROIs/RNs) and to induce 
various patterns of cell death (necrosis and apoptosis) resulting in 
alteration in the alveolar-capillary barrier [18-20]. An up regulation 
of pro-inflammatory mediators (TNF-α and interleukin-8) associated 
with diffuse alveolo-capillary lesions has also been demonstrated in 
rabbits ventilated with large VT under moderate hyperoxia (compared 
with normoxia/large VT and hyperoxia/normal VT) [21,22].

Mechanical ventilation induces alveolar injuries by repetitive 
opening and closing of unstable lung units due to the inactivation of 
surfactant and the excessive mechanical stress between atelelectatic 
areas and neighbouring areas with low ventilation/perfusion ratio 
[23,24].

With the pioneering experimental work of Dreyfuss et al. [25], 
ICU physicians first became aware of the potential deleterious effects 
of positive pressure ventilation [23]. Several reports suggested that the 
application of high VT (>8 ml/kg), high plateau inspiratory pressure 
and/or high inspiratory FIO2 (100%) in critically-ill patients (without 
ALI) may produce pulmonary changes mimicking ALI as expressed 
by diffuse alveolar damage, recruitment of inflammatory cells and 
production of pro-inflammatory mediators [25]. 

In anesthetized patients with healthy lungs, - besides “high” 
VT and elevated inspiratory pressure -, other risk factors for lung 
injuries have been identified [26-29]. Fluid over hydration increases 
capillary hydrostatic pressure and promotes interstitial/alveolar 
edema particularly when lymphatics are disrupted. Additionally, 
tissue trauma, ischemia-reperfusion, blood transfusion and exposure 
to extracorporeal devices may all concur to trigger a widespread 
inflammatory response with potential deleterious effects on the lungs 
[30]. 

Some individuals are prone to develop ALI, given their deficient 
lung defence and repair mechanisms (e.g., antioxidant, heat shock 
protein, p75 receptor for tumour necrosis factor alpha [TNF-α]) 
that fail to counteract the inflammatory and oxidative responses to 
damaging insults [31]. Genetic disruption of the transcription factor 
Nrf2 (NF-E2 related factor 2) has been associated with overexpression 
of proinflammatory cytokines and increased risk of ALI due to 
hyperoxia and high VT. Relevant gene variants or single nucleotide 
polymorphisms (SNPs) in ALI candidate genes have been tested 
for differences in allelic frequency in cohort studies [32]. The Nrf2-
617 SNP (A/ or C/A allele) has been associated with a greater risk of 
post-trauma ALI relative to subjects bearing the wild type. Likewise, 
in patients undergoing oesophagectomy, SNP of the angiotensin-
converting enzyme (D/D genotype) has been found to be highly 
predictive of major pulmonary complications [33].

Over the last two decades, - in thoracic surgery requiring one-
lung ventilation (OLV) -, the routine settings for VT have been shifted 
downwards (from 10 to 12 ml/kg to 6-9 ml/kg) given the growing body 

of scientific knowledge demonstrating the injurious effects of large VT 
[30]. 

Perioperative Lung Protective Strategies
Volatile anesthetics 

Compared with intravenous hypnotics, volatile anaesthetics 
induce bronchodilatation and may inhibit the hypoxic pulmonary 
vasoconstriction (HPV) although no significant difference has been 
reported regarding blood oxygenation when anaesthetic administration 
is titrated to achieve a similar depth of anesthesia [34].

Based on experimental models of lung ischemia-reperfusion (I-R) 
and lipopolysacharide (LPS) or zymosan injuries, volatile anaesthetics 
such as isoflurane and sevoflurane have demonstrated potent 
immunomodulatory properties [35,36]. In isolated rat lungs subjected 
to LPS challenge or I-R, pre-treatment with volatile anesthetics has been 
shown to attenuate lung edema and microvascular protein leakage as 
a result of a reduction in polymorphonuclear recruitment, decreased 
cytokine release from alveolar macrophages/monocytes as well as 
attenuation of the overproduction of pro-inflammatory mediators 
and nitric oxide. Besides multiorgan preconditioning effects, both 
isoflurane and sevoflurane also exert post conditioning effects as far 
as they are administered within 1-2 hours of the onset of LPS-induced 
ALI. Noteworthy, the concomitant administration of beta-blockers 
counteract the anti-inflammatory effects of volatile anaesthetics [37].

Preliminary data obtained in patients undergoing thoracic surgery 
lend support to the anti-inflammatory effects of volatile anaesthetics, 
compared with propofol. Schilling and coll reported an attenuate 
release of IL-8, IL-10, elastase TNF-α and soluble intercellular adhesion 
molecule type 1 in the bronchoalveolar lavage (BAL) of patients 
anesthetized with desflurane (vs propofol, n=30) [38]. In another RCT, 
a reduction of inflammatory markers with a trend for fewer respiratory 
complications was found in patients anesthetized with sevoflurane 
anesthesia (sevoflurane vs propofol, n=40) [39]. 

Pressure or volume controlled ventilation

Mechanical ventilation can be classified as either volume controlled 
(VCV) or pressure controlled (PCV) depending on whether a 
predetermined Vt or predetermined peak inspiratory pressure (PIP) is 
set by the clinician and delivered by the ventilator. Airway resistance as 
well as resistance and compliance of the respiratory system (ventilator 
circuit and patient lung and thoraco-abdominal wall) both determine 
the amount of pressure necessary to deliver the tidal volume and the 
pattern of pressure-volume loops. 

During VCV, inspiratory pressures should be closely monitored 
to prevent barotrauma whereas during PCV, alarms must be set for 
inspiratory volumes (low and high) to prevent hypoventilation or 
hyperventilation. Basically, during VCV, airway pressure increases 
in response to reduced respiratory compliance, increased airway 
resistance, or active exhalation and may increase the risk of ventilator-
induced lung injury (if light levels of anesthesia). In contrast, PCV by 
design, limits the maximum airway pressure delivered to the lung, but 
may result in variable tidal and minute volume [40,41]. 

Several manufacturers have incorporated variable flow options 
as well as volume-targeted, pressure-regulated and time-limited 
ventilatory modalities in their machines. Accordingly, instead of 
providing an exact tidal volume each breath, a target volume is set and 
the ventilator will vary the PIP on a breath to breath basis to achieve 
that volume. As with PCV, the inspiratory time (Ti) limits the length 

http://en.wikipedia.org/wiki/Peak_inspiratory_pressure
http://en.wikipedia.org/wiki/Barotrauma#Ventilator_induced_barotrauma
http://en.wikipedia.org/wiki/Hypoventilation
http://en.wikipedia.org/wiki/Hyperventilation
http://en.wikipedia.org/w/index.php?title=Inspiratory_time&action=edit&redlink=1
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of the inspiratory cycle while offering the benefit that the set Vt will be 
achieved with the lowest possible PIP. Pressure regulated modes such 
as PRVC, Auto-flow (Draeger) or Average Volume Assured Pressure 
Support (AVAPS) from Philips can most easily be thought of as 
turning a volume mode into a pressure mode with the added benefit of 
maintaining more control over Vt with strictly pressure-control.

Regarding flow characteristics, gas may be delivered by the 
ventilator as a constant “square” or a “decelerating” wave. The maximal 
flow in the early part of the inspiratory phase under PCV was initially 
thought to provide more homogeneous distribution of gas mixture 
while avoiding alveolar distension and mitigating ventilation-perfusion 
mismatch [42]. 

In ALI patients, variations in lung strain have been shown to be 
minimized by ventilating with PCV compared with VCV, although 
static mechanics, oxygenation, and hemodynamics remained similar 
[43,44]. Interestingly,  the  ventilation  heterogeneity and patchiness 
in  ventilation  during steady-state VCV can be substantially reduced 
after the transition to PCV [45].

In thoracic surgery, recent interest has been focused on the use of 
PCV given potential benefits related to the attenuation of lung inflating 
pressures and the reduction of intrapulmonary shunt. However, 
conflicting results have been reported regarding the physiological 
and clinical effects of PCV and VCV. In two studies from Turkey, 
PCV provided significant reductions in both peak and plateau airway 
pressures (Ppeak, Ppl) that was associated with better oxygenation 
than in patients receiving PCV [46,47]. Interestingly, larger benefit 
was observed in patients with altered pulmonary function while gas 
exchange was slightly improved when a PEEP of 4 cm H2O was applied. 
Although other investigators confirmed the lower Ppeak associated 
with PCV, they failed to replicate the reduction in Ppl neither any 
benefit in terms of oxygenation [48-51]. 

Importantly, compared with VCV, although PCV has been shown 
to produce lower Ppeak within the ventilator circuit, the pressure distal 
to the tip of the endobronchial tube (bronchus and alveola) was found 
to be equivalent [52]. Altogether, the current state of knowledge does 
not provide evidence for superior clinical effects of PCV over VCV in 
deeply anesthetized/paralyzed patients with healthy lungs receiving full 
mechanical ventilation. 

PEEP 

Following anesthesia induction in the supine position, the FRC 
decreases and the progressive collapse of various amount of lung areas 
results in impaired blood oxygenation owing to ventilation-perfusion 
mismatch (V/Q). 

The addition of PEEP, - by augmenting transpulmonary pressure at 
each exhalation -, prevents the collapse of the small airways and the fall 
in FRC, thereby it may minimize the propensity to develop atelectasis 
[11]. 

In patients with healthy lung, titrated levels of PEEP has been shown 
to restore lung volumes and thereby improve lung compliance while 
decreasing intrapulmonary shunting [53]. Nevertheless, depending on 
the level of PEEP and the presence of pathological lung conditions, 
PEEP has the potential to cause both harm and good. PEEP-induced 
increases in intrathoracic pressure may decrease cardiac output, 
increase the risk of barotraumas and overdistend normal lung areas, 
causing additional physiological dead space, particularly in damaged 
lungs with heterogenous distribution. 

In a sheep model of ARDS, comparison of various methods based 
on pressure-volume curves and gas exchange for setting the optimal 
PEEP failed to show any significant difference: maximum dynamic 
compliance, maximum PaO2/PaCO2, minimum shunt and the lower/
upper inflection points all yielded results that were statistically 
indistinguishable [54].

In morbidly obese patients, observation of the slope of the CO2 
expiratory curve might be helpful to titrate the optimal level of 
PEEP after a recruitment maneuver [55]. The expiratory volumetric 
capnography is an easily traced parameter that provides aggregate 
information about gas exchange at the alveolar-capillary membrane, 
gas transport within airways, and respiratory mechanics. After a RM, 
the “best” PEEP is characterized by a flat CO2 slope reflecting facilitated 
elimination of CO2 as a result of the improved elastic properties of the 
respiratory system. 

In a meta-analysis of eight RCTs involving 330 surgical patients, 
positive pressure ventilation with PEEP resulted in favourable effects 
on day 1 postoperatively in terms of higher PaO2/FIO2 and lesser 
atelectatic areas, compared with mechanical ventilation without PEEP 
(or zero-PEEP, ZEEP) [56]. No relevant adverse effects (barotrauma 
and cardiovascular complications) were reported in the three trials that 
adequately measured these outcomes. In morbidly obese subjects, the 
addition of 10 cm H2O of PEEP to mechanical ventilation has been 
shown to reduce respiratory elastance and to improve oxygen exchange 
[57].

Recruitment maneuver or alveolar recruitment strategy
Bendixen and coll. [58], first demonstrated the physiological 

rationale of a lung recruitment maneuver (RM) to correct oxygenation 
impairment during anesthesia. Single manual ventilation up to 40 cm 
H2O was maintained for 15 s using the anesthesia bag while adjusting 
the expiratory valve. This pressure was equivalent to inflation up to 
vital capacity, and thus this maneuver was also called the vital capacity 
maneuver. More recently, it has been shown that this RM needs to be 
maintained for only 7-8 s in order to reexpand all previously collapsed 
lung tissue. Alternatively, atelectatic re-expansion can be performed 
either by stepwise increase of PEEP/inspiratory pressures (e.g., 0/10, 
5/15, 10/20, 15/25 cm H2O) over 8 to 10 respiratory cycles (alveolar 
recruitment strategy [ARS]) or by applying continuous a positive 
airway pressure (CPAP) over 10-30 s [59]. 

To re-expand atelectatic areas, the lung opening pressure should 
be achieved by temporary elevation of Ptp while at end-expiration, Ptp 
should remain higher than the closing airway pressure. In other words, 
RM re-expands collapsed pulmonary acini and subsequent re-collapse 
is prevented by titration of external PEEP.

In obese patients undergoing laparoscopic bariatric surgery, 
intraoperative alveolar recruitment (vital capacity maneuver 
maintained for 8 s) followed by 10 cm H2O PEEP is more effective 
than ZEEP or PEEP of 5 cm H2O for prevention of postoperative lung 
atelectasis and is associated with better oxygenation, shorter stay in the 
postanesthesia care unit (PACU), and fewer pulmonary complications 
in the immediate postoperative period [60-62]. Application of PEEP 
and RM was not accompanied by a significant reduction in mean 
arterial pressure (MAP), even after pneumoperitoneum and reverse 
Trendelenbourg position. 

During OLV, application of a RM to the dependent lung results 
in significant improvement in blood oxygenation and respiratory 
mechanics (reduced dead space, improved compliance) that is 
accompanied by transient and slight hemodynamic disturbances [63-
65].

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Prella M%22%5BAuthor%5D
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At the end of surgery and before extubation, a single recruitment 
maneuver is not sufficient to produce sustained improvement in 
oxygenation [66]. Presumably, temporary increase in Ptp fails to 
reexpand large areas of atelectasis, air flow being diverted to the 
most compliant part of the lung and causing alveolar overdistension. 
Performing vital capacity at regular time interval might be necessary to 
reverse small volume of collapsed lung areas. 

Specific contraindication to RM should be mentioned: 
hemodynamically unstable patients (hypovolemia), light levels of 
anesthesia (patient-ventilator dysynchrony), bronchospastic airways, 
pneumothorax, bronchopleural fistula and increased intracranial 
pressure.

Tidal volume

Based on experimental models of ALI/ARDS, the “open-lung” 
approach has been shown to minimize the bronchoalveolar strain using 
low VT while maintenance of the FRC and prevention or re-expansion 
of atelectasis is achieved with the application of PEEP and periodic 
RMs [67,68]. Ventilatory management with pressure and volume 
limited ventilation was found to reduce mortality in ten trials including 
1,749 critically adults with ARDS (relative risk (RR) 0.84; 95% CI 0.70) 
[69]. At similar PEEP levels, mechanical ventilation with lower VT (< 8 
ml/kg) was associated with a 25% reduction in hospital mortality. 

Prophylactic utilization of low VT may limit pulmonary and 
systemic inflammation (lesser release of IL-8 and TNF in BALF and 
of plasma IL-6) in mechanically ventilated patients without pre-
existing lung injury [70,71]. In the ICU settings, such protective lung 
strategy have been associated with improved outcomes in terms of 
better survival, lesser barotrauma and shorter time on the ventilator in 
critically-ill patients [69].

Table 1 summarizes all RCTs including surgical patients that 
have questioned the impact of protective ventilatory settings (e.g., 
low VT with PEEP, RM) on markers of inflammation (systemic and 
pulmonary), oxygenation and postoperative pulmonary complications 
[72-85].

Not surprisingly, no difference was observed between traditional 
and protective ventilatory approaches in patients undergoing minor/
moderate surgical procedures, lasting less than 5h. In patients of 
higher surgical risk (major abdominal, thoracic and cardiac surgery), 
a protective ventilation” strategy (VT 4-6 ml/kg PBW, PEEP with or 
without RM) was associated with a reduced expression of alveolar/
systemic inflammatory markers, reduced procoagulant activity in 
the bronchoalveolar fluid, better respiratory mechanical properties 
(dynamic compliance, airway resistance) and stable or improved 
oxygenation indices. In three of these RCTs, better clinical postoperative 
outcomes were reported in the group treated with the protective 
approach [80,84,85]. After major noncardiac surgery, Lee et al. [1] 
reported fewer pulmonary complications and shorter intubation times 
in patients ventilated postoperatively with small VT (6 vs 12 ml/kg) [80]. 
Michelet et al. [84] studied 52 patients undergoing oesophagectomy 
and observed lesser lung edema and better oxygenation index allowing 
earlier extubation among patients treated with low VT (5 ml/kg) and 5 
cm H2O PEEP (compared with 10 ml/kg VT and ZEEP). More recently, 
Yang et al. [85] compared two ventilatory strategies during OLV in 100 
patients scheduled for lobectomy (VT 10 ml/kg, ZEEP and FIO2 100% 
vs. VT 6 ml/kg, 5cm H2O PEEP and FIO2 0.5). The combined endpoint 
of pulmonary dysfunction (PaO2/FIO2< 300 mmHg, lung atelectasis) 
was significantly lower in the “protective” group than the control group 
(4% vs. 22%).

Although these preliminary results support the scientific concept of 
the “open lung” approach, we are awaiting the results of well designed 
RCTs with sufficient power and relevant clinical endpoints.

FIO2

In clinical anesthesia, hyperoxic ventilation (FIO2 >0.8) has been 
advocated for 2 reasons: 1) to prevent hypoxemia during anesthesia 
induction/emergence, by building up a large O2 store in the FRC and 
increasing the safety margin, 2) to promote the “killing” activity of PMN 
cells and prevent the occurrence of surgical site infection by increasing 
tissue PO2 during and shortly after surgery [86,87]. Absorption 
atelectasis and enhanced generation of O2 derived free radicals have 
been incriminated as potential drawbacks of high FIO2 levels.

Following anesthesia induction with 100% FIO2, atelectatic areas 
may reach up to 5-10% of total lung volume whereas the amount of 
collapsed area is much less in those receiving less than 60% FIO2. 

Clinicians should be aware that, following pre-oxygenation at an 
FIO2 of 1.0, 7 min elapse before SaO2 decreases below 90%; in contrast, 
at an FIO2 of 0.6, the time delay before O2 desaturation is shorten to 
3.5 min [88]. 

As a safety measure, pre-oxygenation with high FIO2 (80-100%) 
is recommended to ensure sufficient time in case of difficult airway 
management. After airway control with a laryngeal mask or an 
endotracheal tube, an early RM should be performed and FIO2 should 
be reduced at a level sufficient to ensure optimal O2 delivery with SaO2 
> 96% [89]. During anesthesia emergence, hyper-oxygenation is highly 
discussable as it promotes atelectasis formation [90]. 

Normocapnia vs hypercapnia

Most anesthetists tend to hyperventilate their surgical patients. In 
a cohort study including 3,421 patients undergoing colonic resection 
or gynaecologic interventions, the median etCO2 was 4.2 kPa and 
higher etCO2 was a predictor of reduced hospital length of stay lending 
support to the non-deleterious (or even favourable) effects of short-
term permissive hypercapnia [91].

The current recommendations for ventilatory settings are to target 
SaO2 > 96% and end-tidal CO2 (etCO2) within a range of 4.8-5.5 kPa, 
using a VT of 4-8 ml/kg PBW and pressure limited ventilation (< 30-35 
cm H2O). 

Whenever possible, hypocapnia should be avoided given the 
risk of vasoconstriction of the cerebral vessels and the consequent 
neurocognitive dysfunction. On the other hand, hypercapnia can be 
better tolerated: although it may trigger the release of catecholamines 
causing an increase in oxygen consumption, it has been associated with 
improved O2 tissue delivery and with attenuation of key effectors of 
the inflammatory response and lung neutrophil infiltration [92,93]. 
Currently, clinical evidence supports the use of permissive hypercapnia, 
particularly in ALI/ARDS, status asthmaticus, and neonatal respiratory 
failure [94].

Spontaneous ventilation

Controlled mechanical ventilation is obviously indicated in the 
acute phase of lung illness to ensure adequate alveolar ventilation and 
to reduce work of breathing without causing further lung injury. In 
contrast, during the resolution phase of lung disease, spontaneous 
breathing during mechanical ventilation has been shown to 
improve gas exchange by redistribution of ventilation to dependent, 
juxtadiaphragmatic lung regions and thereby it promotes alveolar 
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Authors Publication 
Year N Types of Surgery Ventilation strategy Effects of low VT Vs High VT

Two Lung Ventilation

Wrigge et al. [72] 2000 39 Visceral, orthopedic and 
Vascular

5ml/kg ZEEP vs 5ml/kg 10 cmH2O PEEP 
vs 15 ml/kg 10 PEEP Similar plasma cytokine levels

Wrigge et al. [73] 2004 30 Visceral 6 ml/kg 10 cmH2O PEEP vs. 12-15 ml/
kg ZEEP

Similar time course of cytokines in tracheal 
aspirate and plasma

Choi et al. [74] 2006 40 Visceral 6 ml/kg cmH2O PEEP vs. 12 ml/kg ZEEP
↙Thrombin anti-thrombin complex
↗Activated Protein C in BALF
↙Thrombomoduline in BALF

Wolthuis et al. [75] 2008 40 Visceral 6 ml/kg 10 cmH2O PEEP vs. 12 ml/kg 
ZEEP

Similar levels of TNF-α, IL-1, MIP-1 in BALF
↙IL-8 in BALF
↙Myeloperoxidase and elastase om BALF
Similar levels of IL-6 and IL-8 in plasma

Reis-Miranda et 
al. [76] 2005 62 Cardiac 4-6 ml/kg 10 cmH2O PEEP+RM vs. 6-8 

ml/kg 3 cmH2O PEEP ↙IL-8, IL-10 in plasma

Chaney et al. [77] 2005 25 Cardiac 6 ml/kg 10 cmH2O PEEP vs. 12 ml/kg 
ZEEP

↗PaO2/FIO2
↙Static lung compliance

Zupancich et al. [78] 2005 40 Post-cardiac 6 ml/kg 10 cmH2O PEEP vs. 10-12 ml/kg 
3 cmH2O PEEP ↙IL-6 and IL-8 in BALF and plasma

Koner et al. [79] 2004 44 Cardiac 6 ml/kg 5 cmH2O PEEP vs. 10 ml/kg 
ZEEP vs 10 ml/kg 10 cmH2O PEEP

Similar plasma TNF-α and IL-1
Similar PaO2/FIO2

Lee et al. [80] 1990 103 General 6 ml/kg vs. 12 ml/kg
↙Pulmonary infection
↙Duration of mechanical ventilation

Wrigge et al. [81] 2005 44 Cardiac 6 ml/kg 10 PEEP vs.12 ml/kg ZEEP ↙TNF-α in BALF similar plasma cytokine levels

Weingarten TN et 
al. [82] 2009 40 Major open abdominal 6 ml/kg 12 PEEP vs. 10 ml/kg ZEEP 

↗ PaO2/FIO2, ↗Compliance, ↙Raw
↙IL-8, ↙IL-6 in plasma (postop)
Similar length of hospital stay

One- Lung Ventilation

Wrigge et al. [81] 2004 32 Lung resection 6 ml/kg 10 cmH2O PEEP vs. 12-15 ml/
kg ZEEP

Similar time course of cytokines in tracheal 
aspirate and plasma

S chilling et al. [83] 2005 32 Lung resection 5 ml/kg ZEEP vs. 10 ml/kg ZEEP ↙TNF-α and sICAM in BALF
Similar levels of albumin, elastase, IL-8, IL-10

Michelet et al. [84] 2006 52 Oesophagectomy 5 ml/kg 5 cmH2O PEEP vs. 9 ml/kg ZEEP
↙IL-1, IL-6, IL-8 in plasma
↗PaO2/FIO2 and ↙lung water content
↙Duration of mechanical ventilation 

Yang m et al. [85] 2011 100 Lung resection 6 ml/kg 5 cmH2O PEEP, FIO2 0.5+RM vs. 
10 ml/kg ZEEP, FIO2 1.0

↙Postoperaive pulmonary dysfunction (PaO2/FIO2 
< 300 mmHg, atelectasis) 

BALF, bronchoalveolar lavage fluid; RM, recruitment maneuver; IL, Interleukin; PEEP, positive end expiratory pressure; ZEEP, zero end expiratory pressure; TNF, tumor 
necrosis factor; IL-x; PaO2/FIO2, ratio of arterial oxygen pressure to fractional inspiratory oxygen pressure

Table 1: Randomized controlled trials assessing the effects of different modes of ventilation.

recruitment. Moreover, during assisted ventilation, cardiovascular and 
sedative drug support can be reduced as a result of improved venous 
return and better patient-ventilator synchronization [95].

For various surgical procedures involving the limbs and the 
thoraco-abdominal wall, regional anesthetic blockade (e.g. perineural 
infiltration or neuraxial block) is sufficient to provide patient comfort. 
For intra-thoracic and intra-abdominal interventions, complete 
muscles paralysis is not always mandatory through the whole 
procedure; spontaneous ventilation can be maintained under light-to-
moderate levels of sedation combined with systemic administration of 
short-acting opiate [96].

During anesthesia emergence, pressure support ventilation (PSV) 
may provide lower work of breathing and improved comfort for 
patients with increased and variable respiratory demand. In addition, 
with assist mode of ventilation, recruitment of dependent collapsed 
lung areas and redistribution of pulmonary blood flow towards 
nondependent zone result in improved oxygenation and restoration of 
the FRC [97,98].

Postoperatively, two types of noninvasive ventilation (NIV) are 
commonly used: continuous positive airway pressure (CPAP) and 
noninvasive positive pressure ventilation (NPPV) which delivers two 

levels of positive pressure (pressure support ventilation + positive end-
expiratory pressure). There are two main indications for NIV: first, 
”prophylactic” application in high-risk patients (elderly, obese, COPD, 
heart failure) in order to prevent postoperative acute respiratory failure 
from developing and, second, “curative” application of NIV once 
ARF has occurred to avoid endotracheal intubation while alleviating 
respiratory insufficiency. 

Although there is some evidence of the effectiveness of NIV in 
preventing post-extubation ERF, the benefits in the treatment of 
ongoing ARF are still debatable [99].

When applying NIV in surgical patients, clinicians should also 
considered the hemodynamic effects of positive pressure to the 
cardiovascular system, which can be favorable on the impaired left 
heart and deleterious on the diseased right heart [100].

Alternate Perioperative Lung Protective Strategies
Newer technological modalities including extracorporeal 

membrane oxygenation  (ECMO) and pumpless  extracorporeal  lung 
assist (PECLA) are being increasingly introduced in critical care 
settings as rescue therapies in acute respiratory failure unresponsive 
to conservative measures. As arterio-venous or veno-venous ECMO or 
PECLA provide gas exchange, the exposure time of the lungs to high 
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stress and/or strain can be minimized by switching the ventilatory 
settings to a protective regimen (low VT with PEEP) enabling the lung 
to rest and to heal [101].

Prehospital use of statin (particularly with aspirin) has been shown 
to confer lung protection in various experimental models of ALI as 
well as in septic patients [102,103]. Likewise, angiotensin-converting 
enzyme inhibitors such as enalapril have emerged as strong candidates 
in lung protection given their ability to block the LPS-induced anti-
inflammatory effects [104]. Finally, preliminary clinical data suggest 
that the administration of inhaled beta 2-adrenergic agonists may 
accelerate the resorption of lung edema by enhancing active sodium 
and water transport in alveolar pneumocytes [105].

Although restrictive fluid regimen has been advocated, - particularly 
in thoracic surgery -, clinically “silent” hypovolemic state and the 
need for vasopressors have been associated with the development of 
postoperative acute kidney injury [106]. Nowadays, new hemodynamic 
monitoring tools enable clinicians to titrate the amount of fluid 
infused to achieve adequate tissue O2 delivery while avoiding excess 
in intrathoracic blood volume (LiDCO system) or extra vascular lung 
water (PiCCO system). Monitoring stroke volume and/or respiratory-
induced variation in pulse pressure variation allows a goal-directed 
fluid and cardiovascular drug therapy that may contribute to avoid 
over hydration while improving gas exchange and tissue oxygen 
delivery [107]. 

Conclusions and Practice Points
Implementation of a bundle of scientifically based perioperative 

interventions represents an integral component of quality control and 
improved clinical care. 

The traditional intraoperative ventilatory settings (VT > 10 ml/
kg PBW) can be harmful even in patients with healthy lungs. In the 
operating theatre, our task is provide safe anesthesia and to ensure 
satisfactory oxygen delivery while minimizing the deleterious effects of 
surgical trauma and avoiding iatrogenic complications (e.g. fluid over 
hydration, airway trauma, VILI, atelectasis, bronchoaspiration, toxic 
drug effects, hyperoxia/hypoxia).

To achieve these goals, the following key items should be 
considered:

 • Pre-oxygenate with a high FIO2 (> 80%) before anesthesia 
induction, allowing a large margin of safety in case of difficult 
airway management. During manual ventilation before 
tracheal intubation, a small positive pressure can be maintained 
throughout the whole respiratory cycle (inspiratory pressure 
less than 25 cm H2O with 4-6 cm H2O PEEP). In morbidly obese 
patients and in those requiring a rapid sequence induction, 
CPAP has been advocated during preoxygenation.

 • After securing the airways (with a laryngeal mask, an ET or a 
double-lumen tube):

o a recruitment manoeuvre is performed (inspiratory P of 40 
cm H2O for 8-10 s) 

o a VT of 6-8 ml/kg (of predicted body weight) is selected 
with limitation of the Ppl < 20 cm H2O (< 30 cm H2O in 
damaged lungs or during OLV)

o PEEP is set empirically (4-6 cm H2O, 10 cm H2= in 
morbidly obese) or titrated using the PV loops or CO2 
curves 

o FIO2 can be reduced to levels sufficient to keep SaO2 > 96% 
(FIO2 < 60%) 

 • The use of volatile anesthetic should be considered in patients 
with bronchospastic disease and may potentially confer 
additional protection to the lungs and other organs.

Pressure or Volume controlled ventilation might be used in 
paralyzed patients. Apply assisted mechanical ventilation whenever 
possible and particularly at the end of surgery before tracheal 
extubation: patient’s respiratory efforts are triggered and assisted by 
the ventilator. 

 • Before extubation, a gentle recruitment maneuver is 
recommended; hyper oxygenation with 100% FIO2 is not 
mandatory (50% to 70% is enough).

 • In the postoperative period, voluntary deep breathing and 
early mobilization should be encouraged and will be facilitated 
if optimal analgesic techniques are provided without undue 
sedation and while cardiovascular homeostasis is maintained. 
In high risk patients, NIV techniques may reduce the risk of 
postoperative acute respiratory failure and the need of re-
intubation. 

 • Use of minimally invasive hemodynamic monitors for is useful 
for goal-directed fluid loading and titration of cardiovascular 
drugs. Monitoring the depth of anesthesia, cardiac output or 
using dynamic indices should be considered in major surgery 
or high-risk patients.
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