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We study the stability character and periodic solutions of the following rational difference systems
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Introduction

In this paper we study stability character and periodic solutions for
the following rational difference systems

_ Xn_lil — yn—li]_ (1)

n+l

> n+l H
yn‘xn—l il xnyn—l il

where the initial values X_;,X,)_;,), are nonzero real numbers.

Difference equation is a hot topic in that it is widely used to
investigate equations arising in mathematical models describing real
life situations such as population biology, probability theory, genetics
and so on. Recently, rational difference equations appeals great
interests. In particular, it is popular to study the system of two rational
difference equations [1-4].

In [5], Cinar has obtained the positive solution of the difference
equation system

1 Y
yn+l =

— (2)
yn xn—lynfl

Also, Cinar et al. [6] has obtained the positive solution of the
difference equation system

m Py,
Yo =
yn xn—lyn—l

In [7], Kurbanli et al. investigated the periodicity of the solutions of
the system of difference equations
:xn71+yn :yn71+xn
yn‘xn—l -1 xnyn—l -1
In [8] Yalcinkaya et al. obtained a sufficient condition for the global
asymptotic stability of the following system of difference equations

_ t,+z, z,+t,
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Elsayed [9] has obtained the form of solutions for the rational
difference system

X1 _ Yo

= . yn =
il-i_ynxn—l " ¢l-i_xnyn—l

xn+1

Yang et al. [10] investigated the system of rational difference
equations

Yt = P (4)

Other related results on system of rational difference equations can
be found in references [11-16].

Let [ be some interval of real numbers and let f,g:IxI—>1
be continuously differentiable functions. Then for all initial values

(X, v )€1, k=-1,0, the system of difference equations [17].

xn+l :f(xnfl’yn)’ yn+l :g(xn’ynfl%n:()’l’z"“’ (5)

©

has a unique solution {(xn Y, )}

ey

A point (¥,¥) is called an equilibrium point of the system (5) if
x=f(x,y)and y = g(x,y).

Let (x,7) be an equilibrium point of the system (5) [17].

1. An equilibrium point (x,¥) is said to be stable if for any & >0

there exist > 0 such that for every initial points (x,l,y,l) and (x,,,)
for which |(x.,,»,) -G 7)|+||(x.3,) - (. 7)|| <& , the iterates (x,,7,) of

*Corresponding author: E. M. Elabbasy, Department of Mathematics, Faculty of Science,
Mansoura University, Mansoura, 35516, Egypt, E-mail: emelabbasy@mans.edu.eg

Received May 25, 2012; Accepted June 19, 2012; Published June 22, 2012

Citation: Elabbasy EM, Eleissawy SM (2012) Periodicty and Stability of Solutions
of Rational Difference Systems. J Appl Computat Math 1:114. doi:10.4172/
2168-9679.1000114

Copyright: © 2012 Elabbasy EM, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

J Appl Computat Math
ISSN: 2168-9679, an open access journal

Volume 1 ¢ Issue 4 « 1000114



Citation: Elabbasy EM, Eleissawy SM (2012) Periodicty and Stability of Solutions of Rational Difference Systems. J Appl Computat Math 1:114.

doi:10.4172/2168-9679.1000114

Page 2 of 6

(x..3,) and (x,,y,) satisfies ||(xn,yn)—()_c, )7)" <g forall n>0.An
equilibrium point (x,) is said to be unstable if it is not stable. (By "”

(x| =y +¥7 ).

2. Anequilibrium point (X, y) issaid tobeasymptotically stableif there
exists 7 > 0 such that (xﬂ,yn) —(X,y) as n—> 0 forall (x,],y,l)

we denote the Euclidean norm in R? given by |

and (x,,y,) that satisfies |(x_,.y_,) = & 7| +|(x. 3, ) - & )| <7

Let (x,y) be an equilibrium point of a map F =(f,g), where
f and & are continuously differentiable functions at (X,y). The

jacobian matrix of F at (X,)) is the matrix [17].

Y x5 Ly
JF('Yﬂ)_/) =

Ox oy
og _ . 0g . _ _ |
—=(x, —=(,
ax( ) ay( )

The linear map Jp (x,y): R? 5> R? given by

of _ _ of _ _
l(x,y)x+ l(x,y)y
_ _(x Ox oy
Jr(ED)| = " o .
=G, y)x+ =X,y
2 &) 6y( y)y
is called the linearization of the map F at (X,7).

A solution {(X,, > Vn )}j:
integer @ such that

_, of (1) is periodic if there exist a positive

(xn+w’yn+a)) = (x,,,yn ), n=1,2,..,
and @ is called a period.

Theorem 1 (Linearized Stability Theorem)

Let F=(f.8) be a continuously differentiable function defined on
an open set I in R*, and let (X,¥) in I be an equilibrium point of
the map F=(f,g) [17].

1. If all the eigenvalues of the Jacobian matrix J,(¥,¥) have
modulus less than one, then the equilibrium point (X,y) is
asymptotically stable.

2. Ifat least one of the eigenvalues of the Jacobian matrix J(X,¥)
has modulus greater than one, then the equilibrium point (X,¥) is
unstable.

3. An equilibrium point (X,) of the map F=(f,g) is locally
asymptotically stable if and only if every solution of the characteristic
equation

A2 —trJ (X, 7)A+det J,.(X,7) =0, (6)

lies inside the unit circle, that is, if and only if
|trJ . (x,7)| <1+det J,. (¥, 7) < 2. )
4. An equilibrium point (¥,¥) of the map F=(f,g) is a saddle
point if the characteristic equation (6) has one root that lies inside the

unit circle and one root that lies outside the unit circle if and only if

|77 (%, 7)| > |1+ det J, (%, 7)|and (] . (%, 7))’ —4det J.(%,7)>0. (&)

5. An equilibrium point (X,») of the map F=(f,g) is
nonhyperbolic if at least one of the eigenvalues of the Jacobian matrix
J(X,y)has modulus equal one.

6. The characteristic equation (6) has at least one root that lies on
the unit circle if and only if

|trJ - (x,7)| = |1+ det J . (X, 7)| )
or
detJ,(x,y)=1 and #J.(X,y)<2. (10)
Main Results
The first system
MY _ Yl
n+l ynx’Hl +1 s n+l xnyn_l +1

In this subsection, we study the stability of solutions of the differ-
ence system

1 1
xn—l + , ynH — yn—l + s (11)
ynxnl+1 xynfl-‘rl

— n

xn+1 =

where the initial values X_;,Xy,Y_;,), are nonzero real numbers
such that y,x_; #—1 and Xy, #—1.

Theorem 1: System (11) has the unique positive equilibrium point
(x,»)=(1,1) which is locally asymptotically stable.

Proof: The equilibrium point of the system (11) satisfies the
following system of equations

x+1 y+1
Fe o y=2 (12)
x+1 xy+1
system (12) implies
2 —-1=0, (13)
o -1=0, (14)

from equations (13) and (14), the unique positive equilibrium
pointis (1,1).

The map F' associated to system (11) is

x+1

F(x,y>=[f (’"”j: el 15)
g(x,y) y+1
xy+1

The Jacobian matrix of F at the equilibrium point (X,Y) is

1-y —(x*+X)

‘]F(f’y): (y’f;_l) (}Tx-'—j) : (16)
-0 +y) 1-x
(T+1) (1)

The value of the Jacobian matrix of F'at the equilibrium point
) =(LD is

0 —_21

Je(L1)= 1 (17)
— 0
2
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Then the characteristic equation about (1,1) has the following form
2 _ - 18 _r +1 _c +1
A= pA+q,=0, (18) Xonse — 7 72 Yionse )
rd —1 ch—1
where
p,=tJ.(1,1)=0, (19) Xioner =Ch=1, ¥yo,., =rd -1,
-1
q, =detJ, (1,1)=—. (20) _d+1 _ h+1
4 Xionss J 1 Nionss = h_l )
The result follows from Theorem 1.1 (iii) and the following relations ra-— =
— 1 — -3 X =c =7
|P1|—(1+q1)*0—(1—z)*7<05 10149 > Vion+9 )
and
—1 = fr
g =—<L. Xions10 = 45 Vigwrio = I
4
Therefore, the equilibrium point (1,1) is locally asymptotically Proof: From equation (21), we see that
x _ +1 +1
stable. X, = #, = y";,
ynxn—l _1 xnyn—l _1
Remark 1: The following system
1 1 x,+1 x,+1 |
- - xn+ = = = xnyn— )
X — xn—l y — yn_l _ : yn+1xn _1 yn—l +1 l
n+l T 1’ x, | = -1
yn‘xnfl + xnynfl + XV na -1
has the unique negative equilibrium point (¥, y) = (-1,-1) which is
locally asymptotically stable, where the initial values x_,x,,y_;, ¥, A v, +1 _
are nonzero real numbers such that yox_; #—1 and x,y_, #— Y2 = x oy -1 - x +1 = VaXuo -1
n+ln n—
The second system ' Vn (yxl_l] -1
n”'n-1
_ Xl _ Yatl
Xos1 = > Vo1 =
-1 -1 x,_, +1
y"x”—l xnyn—l [/ S |
. . . . anrl_’_1 ynxnfl_l yn+1
In this subsection, we study the solutions of the following system X, = = = ,
yn+2xn+1 - 1 xn_] + 1 ynxn—l _1
‘xn—l + 1 ynfl + 1 (ynxnfl _1) -1
xn+1 = s Vo T s 1) Vs -1
yn‘xn—l _1 xnyn—l _1
Voo +1
where the initial values X_j,X,,¥_,,), are nonzero real numbers ]
yn+1+1 xnynfl_l xn+1
such that y,x , #1and x,»y, #1. Vs = = = ,
X2V —1 (x _1) Y +1 _1 X,V —1
Theorem 2: Let X, =c,x,=d, Y, =71, Y, = h, be nonzero V-1 x,y, 1
real numbers such that y,x_; #1 and x,y_ #1 . Let {(xnayn)}j:q be
a .solutio'n of system (21). Then all solutions of system (21) are periodic x4l (xnyrk1 _ 1) +1
with period ten and for n=10,1,... X, 4= = =Yt
BATEC T 1 X, + 1
el o+l 1 (%2, -1)-1
=— wil - n/ n-1
om0 Yion+1 d —1
- — Voo 1 y.x, —1)+1
Xignsa =1d =1, Yyg,0 =ch—1, Vs =2 = ( ) =X
xn+3yn+2_1 ( yn+l j(yx _1)_1
h+l d+1 S
Xigns =5 Viows =0
1ons3 tons3 =1
+1
Xionsa — s Vionsa = G = +1 Al
n+.

Xiones = s Vignes = 4

yn+4xn+3_1 (x )( yn+1 J_lzyn’
" ynxn—l_l
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v +1 For n=0 the result holds for the given solutions. Now suppose
SR — n > ( that and our assumption holds for z —1. That is;
_ yn+3+1 xnyn—l _1
yn 5 - = xn:
’ xn+4yn+3_1 xn+l X :C—H :r—_'_1
(yo)| ——|-1 10n-9 = Yion-9 >
xnyn—l _1 c - I"d _1
_ X4 1 _ Vo +1 _ Xigus = A =1, Yyg,g =Ch—1,
xn+6 _1 1 y}’l+1 o
YnisXnia XnVu1 —
h+1 d+1
x s — y e
10n-7 > 10n-7 b
" ch—1 " rd —1
% — yn+4 + 1 — xn—l + 1 —
n+6 n+l° = =
XpisVora—1 Y%, -1 Xion-6 = > Vion-s =
X 5_|_1 y +1 xlOn—S :h’ len—S :d’
n+ — n —
‘xn+7 1 - 1 - yn+29
yn+6‘xn+5 - xn+lyn - r+1 c+1
Xon-4 = s Vion-4 — 5 1>
" rd —1 ! ch—1
Vs 1 x, +1
yn+7 = = = n+2° — —
X, Vos—1 vy .x —1 Xigns =Ch =1, yyo,5 =rd =1,
d+1 h+1
x = —_— = —_—
. = X stl _ ytl . on2 =~ T Yion-2 ch_1’
n+8 _1 _1 n+3?
yn+7'xn+6 xn+2yn+1 . -
Xon-1 — € Vionr — s
DR S e = —
yn+8 — n+ 1 — n+ 1 — xn+3’ xlOn d, len h.
X — X -
n+7yn+6 yn+2 nl It follows that
. x,.,+1 oy, +1 . L g tl el o Voput1 _ r+l
n+9 - - - n+d o 10n+1 ViosXro_ _1 ch_l’ 10n+1 X,V _1 I’d—l’
yn+8xn+7 —1 'xn+3yn+2 -1 1001001 10nY100-1
+1 +1
Xion+2 S TR rd =1, Vi, = YT ch—1,
_ yn+7 + 1 _ yn+2 + 1 _ y10n+l‘x10n -1 x10n+1y10n -1
yn+9_ 1_ l_xn+4’
xn+8yn+7 - yn+3yn+2 -
. _ X+l A+ y _ D tl  _d+l
o Pioms2Xionar — 1 ch—1""""" Xions2Vionss —1 rd -1’
X o+1 y . +1
n+8 — n+3 — —
Xn+10_y X —l_x y _l_yn+5_xn9 . _ Xignen +1 — .y _ Vionsa T1 _.
9 8 4 3 10n+4 s Y1on+4 5
e e 10ns3%10n42 1 Xigns3Vions2 — 1
+1 X .. +1 Ko+l _ Dowstl
yn+10 = yn+8 = 3 = xn+5 = yn' Hionss = y 10)63 -1 N h’ Viomss = X, 10y3 -1 - d,
Xn+9yn+8 _1 yn+4xn+3 —1 10n+47*10n+3 107n+4Y10n+3
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_ Xguatl o+l Vowa ¥l e+l
Xiont6 — 1 d =1 o = 1 -1
YionssXronsa = ra — X1on+5 V10044 — cn—
X +1 +1
Xiopes = 10n+5 =ch _1’ Viowss = y10n+5 =rd _1’
VionseXionss 1 Xionr6Vi0ns 1
_ Xometl _ d+l _ Yowetl  _ h+1
Xontg = 1 = a1 Yionrg = 1 - h_1
Yion+7¥10n46 — ra— X10n47 V10046 — cn—
X +1 h% +1
— 10n+7 — — 10n+7 —
Xion+o 1 =C Vignso T 1 =7,
YionssXi0n+7 ~ X10n+8 V10047 ~
Xiopeg 1 y +1
_ 10n+8 _ _ 10n+8 _
Xons10 = 1 dy Yigpo = 1 h.
10049810048 ~ X10n+9 V10018 ~
Hence, the proof is completed.
Remark 2: Let x =c,x,=d, Y, =7, Y,=h, be

nonzero real numbers such that Y X_, #1 and X0V #1. Let

{(xn,yn )}:;_1 be a solution of system

_ Yl
> Vo1 = T — (22)
xnynfl _1

Then all solutions of system (22) are periodic with period ten and
for n=0,1,...

o r—1
> Vionst = 5

rd —1

c—1
ch—1

Xione1 —

Xignez = 1=1d, yyg,,, =1—ch,

o el e
10n+3 Ch—l’ 10n+3 ]"d—l’
Xionsa = Vs Vionss — G

Xiones = s Vignes = ds

_r-1
Xion+6 ’

rd —1

_c—-1
Yionss = >

ch—1
Xigni7 =1=Ch, Yo, =1-rd,

_d-1 _h-1
Xiones = 7 7> Nomss = 7 1

rd -1 ch-1’

Xionso = € Vionso = T

Xioms10 = 4> Vigwrro = I-

Numerical Examples

In this section, we give some numerical simulations supporting
our theoretical analysis via the software package Matlab 7.13. These
examples represent the periodicity and stablity of solutions of two
dimensional systems of rational difference equations (1).

Example 1
Counsider the difference system:
. x,,+1 _ Vs +1
n+l 1 > Von 1 > (23)
yn'xn—l + 'xnyn—l +
with the initial conditions x_, =-0.5, X, =-2, ¥, =0.3,

¥y = —1.7 System (23) has local asymptotic stability of the equilibrium
point (1,1) (Figure 1).

Example 2
Consider the difference system:
x _ +1 y _ +1
-1 o 1
X T Ve T (24)
ynxnfl -1 xnynfl -1
with the initial conditions x_; =2, x, ==5, y_, =3, y, =4. The

solution of (24) is periodic with period 10. (Figure 2).

£

x(n)

x(n)y(n)

10 15 20 25 30

x(n)y(n)
&

-20
-5

Figure 2: The solution of (24) is periodic with period 10.
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