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Introduction
Many of the statistical procedures including correlation, 

regression, t tests, and analysis of variance are based on the assumption 
that the data follows a normal distribution or a Gaussian distribution. 
In many cases, the assumption of normality is critical, when the 
confidence intervals are developed for population parameters like 
mean, correlation, variance etc. If the assumptions, under which the 
statistical procedures are developed, do not hold the conclusion made 
using these procedures may not be accurate. So, the practitioners need 
to make sure the assumptions are valid. Checking the validity of the 
normality assumption in a statistical procedure can be done in two 
ways: empirical procedure using graphical analysis and the goodness-
of-fit tests methods. The goodness-of-fit tests which are formal 
statistical procedures for assessing the underlying distribution of a 
data set are our focus here. These tests usually provide more reliable 
results than graphical analysis. There are many statistical tests available 
in literature to test whether a given data is from a normal distribution. 
In this article we review most commonly used methods for normality 
test and compare them using power and observed significance value.

The first normality test in the literature is the chi-square goodness-
of-fit test Snedecor and Cochran [1] which was suggested by Pearson 
[2]. Later, the famous Kolmogorov-Smirnov goodness-of-fit test was 
introduced by Kolmogorov [3]. The Kolmogorov–Smirnov statistic 
quantifies a distance between the empirical distribution function of 
the sample and the cumulative distribution function of the reference 
distribution. The Anderson-Darling test [4] assesses whether a 
sample comes from a specified distribution. It makes use of the 
fact that, when given a hypothesized underlying distribution and 
assuming the data does arise from this distribution, the frequency of 
the data can be assumed to follow a Uniform distribution. Lilliefors 
[5] test is a modification of Kolmogorov’s test. The Kolmogorov’s
test is appropriate when the parameters of the hypothesized normal
distribution are completely known whereas in Lilliefors parameters
can be estimated from sample. We have included Lilifores test but not
KS test in our simulation studies, since in most practical situations
we would not know the parameters of null distribution. Shapiro and
Wilk [6] test is the first test that was able to detect departures from
normality due to either skewness or kurtosis or both [7]. D’Agostino
[8] proposed a test which is based on transformations of the sample

kurtosis and skewness. 0 and Francia [9] suggested an approximation 
to the Shapiro-Wilk test which is known to perform well [10]. Jarque-
Bera [11] test is based on the sample skewness and sample kurtosis 
which uses the Lagrange multiplier procedure on the Pearson family 
of distributions to obtain tests for normality. In order to improve the 
efficiency of the Jarque-Bera test, Doornik and Hansen [12] proposed 
modification which involves the use of the transformed skewness. The 
skewness test Bai and Ng [13] is based on the third sample moment. It 
is used to test the non-normality due to skewness. In the kurtosis test 
Bai and Ng [13,14] the coefficient of kurtosis sample data is used to test 
non-normality due to kurtosis. Gel and Gastwirth proposed a robust 
modification to the Jarque-Bera test. The Robust Jarque-Bera uses a 
robust estimate of the dispersion in the skewness and kurtosis instead 
of the second order central moment. Brys, et al. [15] have proposed 
a goodness-of-fit test based on robust measures of skewness and tail 
weight. Bonett and Seier [16] have suggested a modified measure of 
kurtosis for testing normality. Considering that the Brys test is a 
skewness based test and that the Bonett–Seier is a kurtosis based test a 
joint test using both these measures was proposed by Romao et al. [17] 
for testing normality. The joint test attempts to make use of the two 
referred focused tests in order to increase the power to detect different 
kinds of departure from normality. Bontemps and Meddahi [18] have 
proposed a family of normality tests based on moment conditions 
known as Stein equations and their relation with Hermite polynomials. 
Gel et al. [19] have proposed a directed normality test, which focuses 
on detecting heavier tails and outliers of symmetric distributions. Last 
one in the list is the G test proposed by Chen and Ye [20].

Over forty (40) different tests have been proposed over time to verify 
the normality or lack of normality in a population [21]. The main goal 
of this paper is to compare the performance of most commonly used 
normality tests in terms of the power of the test and the probability of 
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Abstract
The problem of testing for normality is fundamental in both theoretical and empirical statistical research. This paper 

compares the performances of eighteen normality tests available in literature. Since a theoretical comparison is not 
possible, MonteCarlo simulation were done from various symmetric and asymmetric distributions for different sample 
sizes ranging from 10 to 1000. The performance of the test statistics are compared based on empirical Type I error rate 
and power of the test. The simulations results show that the Kurtosis Test is the most powerful for symmetric data and 
Shapiro Wilk test is the most powerful for asymmetric data.



Citation: Adefisoye JO, Golam Kibria BM, George F (2016) Performances of Several Univariate Tests of Normality: An Empirical Study. J Biom Biostat 
7: 322. doi:10.4172/2155-6180.1000322

Page 2 of 8

Volume 7 • Issue 4 • 1000322J Biom Biostat, an open access journal
ISSN: 2155-6180

type I error (α). Yazici and Yolacan [22] and recently Yap and Sim [23] 
did some work on the comparison of normality tests, but kurtosis tests 
and skewness tests were not in their work. Interestingly, the kurtosis 
test turned out to be the best test for symmetric distributions and 
the skewness test performs well for both symmetric and asymmetric 
distributions.

The rest of the paper is organized as follows. Section 2 discusses 
different statistical test for normality. A simulation study has been 
conducted in section 3. A real life data are analyzed in section 4 and 
finally some concluding remarks are given in section 5.

Statistical Methods
There are various parametric and nonparametric tests for normality 

available in literature. This section discusses widely used statistical 
methods for normality tests.

Lilliefor’s test [LL]

The test statistic is defined as:
*

x nD Sup F (x) S (x)= − , 

Where Sn (x) is the sample cumulative distribution function 
and F*(x) is the cumulative distribution function (CDF) of the null 
distribution. For more details and critical values refer Conover [24].

Anderson–Darling test [AD]

The AD test is of the form:

[ ]2( ) ( ) ( ) ( )nAD n F x x x dF xψ
∞
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= − Φ∫

Where Fn(x) is the empirical distribution function (EDF), Φ(x) 
is the cumulative distribution function of the standard normal 
distribution and ψ(x) is a weight function. The critical values for the 
Anderson-Darling test along with a more detailed study have been 
published in Stephens [25].

Chi-Square test [CS]

The chi-square goodness-of-fit test statistic is defined as:  
2

2

1

( )k
i i

i i

O E
E

χ
=

−
= ∑ ,

where ‘ Oi’ and ‘Ei’ refers to the ith observed and expected frequencies 
respectively and k is the number of bins/groups. When the null 
hypothesis is true the above statistic follows a Chi-square distribution 
with k-1 degrees of freedom.

Skewness test [SK]

The skewness statistic is defined as:
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Under H0, the test statistic Z(g1 ) is approximately normally 
distributed for n > 8 and is defined as:
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Kurtosis test [KU]

The kurtosis statistic is defined as:
2
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Under H0 the test statistic Z(g2 )is approximately normally 
distributed for n ≥ 20 and thus more suitable for this range of sample 
size. Z(g2 ) is given as:
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D’Agostino-Pearson K2 test [DK]

The test combines g1 and g2 to produce an omnibus test of 
normality. The test statistics is:

2 2 2
1 2K Z g Z g= +

Z2 g 1 and Z2 g 2 are the normal approximations to g1 and g2 
respectively. The test statistic follows approximately a chi-square 
distribution with 2 degree of freedom when a population is normally 
distributed. The test is appropriate for a sample size of at least twenty.

Shapiro–Wilk test [SW]

The Shapiro-Wilk test uses a W statistic which is defined as 
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Where m=n/2 if n is even while m=(n – 1)/2 if n is odd, 
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= −∑  and x(i) represents the ith order statistic of the sample, 

the constants ai are given by
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Where m1, m2, m1,… mn are the expected values of the order statistics 
of independent and identically distributed random variables sampled 
from the standard normal distribution, and V is the covariance matrix 
of those order statistics. For more information about the Shapiro-Wilk 
test refer the original Shapiro and Wilk [6] paper and for critical values 
refer Pearson and Hartley [26].

Shapiro-Francia [SF]

The test statistic is defined as:
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The W′ equals the product-moment correlation coefficient between 
the x(i) and the mi, and therefore measures the straightness of the 
normal probability plot x(i) ; small values of W′ indicate non-normality. 
A detailed discussion of this test along with critical values is available 
in Royston [27].

http://www.itl.nist.gov/div898/handbook/eda/section4/eda43.htm#Stephens
http://www.itl.nist.gov/div898/handbook/prc/section5/prc5.htm#Shapiro, S. S.and Wilk M. B. (1965), An analysis
http://www.itl.nist.gov/div898/handbook/prc/section5/prc5.htm#Pearson, A. V., and Hartley, H. O.
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Jarque-Bera test [JB]

The test statistic is given as:
2 2
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Where 1b  and b2 are the skewness and kurtosis measures and 
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 respectively; and m2, m3, m4 are the 

second, third and fourth central moments respectively. The Jarque-
Bera statistic is chi-square distributed with two degrees of freedom.

Robust Jarque-Bera test [RJB]

The robust Jarque–Bera (RJB) test statistic is defined as
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= − = π∑  and M is the sample median. 

The RJB statistic is asymptotically χ2
2-distributed

Doornik-Hansen test [DH]

The test statistic involves the use of the transformed skewness 
and transformed kurtosis. The transformed skewness is given by the 
following expression:
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Bowman and Shenton [28] had proposed the transformed kurtosis 
z2 as follows,
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The test statistic proposed by Doornik and Hansen [12] is given by

( ) [ ]
2 2

1 2DH Z b z = + 
The normality hypothesis is rejected for large values of the test 

statistic. The test is approximately chi-squared distributed with two 
degrees of freedom.

Brys-Hubert-Struyf MC-MR test [BH]

This test is based on robust measures of skewness and tail weight. 
The considered robust measure of skewness is the medcouple (MC) 
defined as
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where med stands for median mF is the sample median and h is a kernel 
function given by
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The left medcouple (LMC) and the right medcouple (RMC) are the 
considered robust measures of left and right tail weight respectively 
and are defined by

( )FLMC MC x m= − <  and ( )FRMC MC x m= >

The test statistic TMC-LR is then defined by
1( ) ' ( )MC LRT n w V wω ω−

− = − −

in which w is set as [MC, LMC, RMC]’, and ω and V are obtained based 
on the influence function of the estimators in ω. According to Brys, et al. 
[15], for the case of normal distribution,  and V are defined respectively 

as 
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The normality hypothesis of the data is rejected for large values 
of the test statistic which approximately follows the chi-square 
distribution with three degrees of freedom.

Bonett-Seier test [BS]

The test statistic Tw is given by:
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This statistic follows a standard normal distribution under null 
hypothesis.

Brys-Hubert-Struyf-Bonett-Seier Joint test [BHBS]

The normality hypothesis of the data is rejected for the joint test 
when rejection is obtained for either one of the two individual tests for 
a significance level of α/2.

Bontemps-Meddahi tests [BM(1) and BM(2)]

The general expression of the test family is given by:
2

3
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Where ( ) /i iz x x s= −  and Hk (⋅) represents the kth order 
normalized Hermite polynomial.

Different tests can be obtained by assigning different values to p, 
which represents the maximum order of the considered normalized 
Hermite polynomials in the expression above. Two different tests are 
considered in this work with p=4 and p=6; these tests are termed BM3-4 
and BM3-6. The hypothesis of normality is rejected for large values of the 
test statistic and according to Bontemps and Meddahi [18]; the general 
BM3-p family of tests asymptotically follows the chi-square distribution 
with p - 2 degree of freedom.
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Gel-Miao-Gastwirth test [GMG]

The test is based on the ratio of the standard deviation and on the 
robust measure of dispersion Jn as defined in the expression:

1

/ 2 n

n i
i

J x M
n

π
=

= −∑
where M is the sample median.

The normality test RSJ which should tend to one under a normal 
distribution is thus given by:

sJ
n

sR
J

=

The normality hypothesis is rejected for large values of the RSJ, and 
the statistic ( 1)sJn R −  is asymptotically normally distributed [19].

G test [G]

The test is used to test if an underlying population distribution is 
a uniform distribution. Suppose x1, x2,…, xn are the observations of 
a random sample from a population distribution with distribution 
function F(x). Suppose also that x(1), x(2),…, x(n) are the corresponding 
order statistics. The test statistic has the form:
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Where x(0) is defined as 0, and x(n+1) is defined as 1.

We can observe that (1) (2) ( )( ), ( ),..., ( )nF x F x F x  are the ordered 
observations of a random sample from the U(0,1) distribution and thus 
the G Statistic can be expressed as:
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When the population distribution is the same as the specified 
distribution, the value of the test statistic should be close to zero. On 
the other hand, when the population distribution is far away from the 
specified distribution, the value should be pretty close to one.

In order to use the test to test for normality, we can assume F(x) to 
be a normal distribution. Considering the case where the parameters of 
the distribution are not known, Lilliefor’s idea is adopted by calculating 
x  and s2 from the sample data and using them as estimates for µ and  

σ2 respectively, and thus F(x) is the cumulative distribution function of 
the 2( , )N x s  distribution. By using the transformation:

xz µ
σ
−

=

The test statistic becomes:
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The hypothesis of normality should be rejected at significant level 
α if the test statistic is bigger that it’s 1 - α critical value. A Table 1 of 
critical values is available in Chen and ye [20].

Simulation
Since a theoretical comparison among the test statistics is not 

feasible, a simulation study has been conducted instead to compare the 
performance of the test statistics in this section.

Simulation techniques

The results of the simulation vary across different levels of 
significance, sample size and alternative distributions. The results for 
the 0.05 significance level for the different distribution considered 
are as presented in the Tables 1-3. First we generate samples of sizes 
20, 50, 100 and 500 from standard normal distribution to compare 
probabilities of type I error. The empirical probability of Type I error 
is defined as the number of times null hypothesis of normality rejected 
divided by the total number of simulations. The results in Table 1 are 
based on 10,000 simulations. We use the software R 3.1.1 R Core Team 
[29] for all simulations.

The empirical power of a test is calculated as the ratio of the number 
of times the null hypothesis rejected when the alternative hypothesis 
of non-normality is true. For power comparison purposes we have 
considered the following distributions: Beta, Uniform, Student’s t and 
Laplace and these are class of symmetric distributions. For assymetric 
class of distributions, we consider Gamma, Chi-square, Exponential, 
Log-Normal, Weibull and Gompertz distributions. To compare power 
of the tests we generate samples of sizes 20, 50, 100 and 500 from non-
normal distributions. The power based on 10,000 simulations from 
different symmetric distributions is presented in Table 2 and those 
from asymmetric distributions are shown in Table 3. The critical values 
for corresponding test statistics are discussed in Section 2.

Discussion of simulation results

The best test is the one with maximum power while keeping the 
nominal significance level. Table 1 gives the type I error rate while 
Tables 2 and 3 give the power of the tests for the several alternative 
distributions.

An examination of the performance of the tests in terms of type I 
error rate shows that the LL, AD, CS, DK, SK, KU, SW, SF, RJB, DH 
tests were found better than the other tests; these tests have Type I error 
rates that were around the 5% level specified. The RJB test also have 
generally acceptable type I error rate but these rate were slightly higher 
than specified when the sample size was less than 50. The JB, BH, BS, 
BM (1) and G statistic all have Type I error rates lower than 5% and 
tend to under-reject while the BHBS, BM (2) and the GMG have Type 
I error rates higher than 5% and tend to over-reject.

A consideration of the results of power of the tests showed that 
different tests performed differently under different combinations 

Normal (0, 1) – Skewness = 0, Kurtosis = 0
N LL* AD* CS* DK* SK* KU* SW* SF* JB RJB DH* BH BS* BHBS BM(1) BM(2) GMG G*

20 4.67 4.87 4.86 5.8 4.81 4.6 4.68 4.98 2.32 6.03 4.84 1.09 4.67 13.65 2.69 3.6 8.44 4.73
50 4.72 4.87 5.04 5.75 4.9 5.03 4.96 5.17 3.74 5.87 4.81 4.09 4.41 14.02 3.3 6.67 9.05 4.41
100 5.22 5.42 5.01 5.76 4.94 5.47 5.03 5.46 4.49 5.84 5.3 3.76 5.17 14.42 4.23 9.3 10.03 5.55
500 4.77 4.54 5.12 4.83 4.43 5.18 4.56 4.55 4.22 4.17 4.33 4.85 4.83 15.51 4.16 12.23 10.18 4.9

*Tests with acceptable Type I error rates.

Table 1: Simulated Type I error rate at 5% significance level.



Citation: Adefisoye JO, Golam Kibria BM, George F (2016) Performances of Several Univariate Tests of Normality: An Empirical Study. J Biom Biostat 
7: 322. doi:10.4172/2155-6180.1000322

Page 5 of 8

Volume 7 • Issue 4 • 1000322J Biom Biostat, an open access journal
ISSN: 2155-6180

of the sample size and the significance level. A general and expected 
pattern was observed that as sample size increase the power of the test 
also increase.

With Beta (2, 2) and Beta (3, 3) as the alternative distributions, we 
have symmetric distributions with short tails. With Beta (2, 2), only the 
KU at 78.79% exhibited significant power when the sample size was 
less than 100, followed by the CS at 64.97%. However, with the sample 
size of 200, all the test reached at least 80% except for BHBS at 77.99, SF 
at 75.40, AD at 70.79% and JB at 61.04%. All other tests do not exhibit 
significant power especially the SK and BH which had 0.05% and 46.74 
% power respectively, even at n=1000, and are clearly not suitable 
for these conditions. It is noticed that as the value of the parameter 
increases, the tail of the distribution reduces and consequently the 
coefficient of kurtosis resulting in a loss of power. In fact, for Beta (3, 
3), considerable power was not achieved until when the sample size was 
200; the kurtosis test was able to achieve a 79.72% power at this point.

In the case of a Uniform (0, 1) as the alternative distribution, the 
KU test had a power 88.59% at n=50 to prove being the most powerful 
under this condition, followed closely by DK (79.77%). With n=100, all 
tests excepts the LL, CS, SK, JB, RJB, BH, BM (1) and the G had power 
greater than 80%; the CS, SK, JB, RJB, BH, BM(1) and G particularly 
proved to be very bad test with n ≤ 50 in this situation with the SK only 
achieving a power of 0.07% even at n=1000.

For a t(10) (t-distribution with 10 degrees of freedom) distribution, 
all the test were poor in detecting non-normality; even at n=500, only 

the BM(1) and BM(2) achieved a power of 80%, followed closely by the 
RJB (76.42%), GMG (75.54%), JB (75.16%), DH (74.97%), KU (74.37%) 
and SF (71.84%). All other test had power below 70% at n=500 or less. 
However, BM (2) is not acceptable as it has unacceptable type I error rate.

For a t(5) distribution that is symmetric and long-tailed, none of 
the tests was able to achieve a power of 80% even at n=100 with those 
that achieved closest to this cut-off point being the BM(2) (71.35%), 
RJB (69.02%), GMG (68.79%), DH (64.10%), JB (62.90%), SF (62.89%) 
and DK (60.04%).

Considering a Laplace (0, 1) with a mean of zero, the GMG is the 
most powerful for all sample sizes and achieved a power of 94.86% 
with n=100, with the AD, SW, SF, RJB, DH, BS, BHBS and BM(2) all 
achieving power above the 80% threshold. The SK and the G tests are 
the least powerful under this alternative distribution.

In the situation where the alternative distribution is a Gamma (4, 
5), the most powerful test was the SW reaching a power of 95.81% 
at n=100, it was followed closely by the DH, BM(2), SF, and SK all 
achieving more than 90% power at n=100. The least powerful under 
the situation are the G, KU and BS. Both G and KU that did not achieve 
80% power until n=500; the BS only achieved a power of 61.99% even 
at n=1000.

The chi-square (3) distribution proved to be one that was easily 
identified as being non-normal by all tests with SW(87.19%), SF 
(83.50%), AD(79.93%) and DH(79.42%) all achieving adequate power 

N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G
Beta (2, 2) – Skewness = 0, Kurtosis = -0.86
20 5.13 6.00 5.26 3.61 0.78 9.48 5.60 2.72 0.11 0.73 2.55 1.46 8.30 14.93* 0.14 0.58 7.99 3.15
50 8.25 13.47 7.35 23.54 0.25 38.86* 15.19 5.62 0.03 0.08 6.10 7.56 21.28 26.97 0.08 10.80 25.41 4.41
100 15.06 31.17 11.25 64.97 0.18 78.79* 44.79 20.82 1.35 0.01 25.31 7.69 46.33 46.10 11.76 47.16 54.35 6.96
500 83.33 99.82 69.55 100.00 0.06 100.00 100.00 100.00 100.00 99.72 100.00 25.03 99.73 99.49 100.00 100.00 99.91 70.53
Beta (3, 3) – Skewness = 0, Kurtosis = -0.67
20 4.56 4.66 4.77 2.58 1.02 5.65 4.11 2.16 0.17 1.11 1.99 1.35 5.74 14.31* 0.08 0.77 6.49 2.80
50 5.88 6.98 5.61 9.80 0.50 18.93 6.59 2.56 0.05 0.20 2.68 5.82 11.36 19.15* 0.03 4.41 14.51 3.42
100 8.16 13.13 7.05 27.73 0.21 42.81* 15.34 5.97 0.23 0.06 7.73 5.98 23.21 28.10 0.13 17.74 29.80 4.39
500 40.98 80.44 26.38 99.26 0.25 99.88* 97.53 90.57 94.20 78.87 96.26 12.81 89.92 87.52 93.88 97.75 94.21 14.16
Uniform (0, 1) – Skewness = 0, Kurtosis = -1.20
20 9.34 16.72 8.09 15.57 0.64 30.12* 19.84 8.14 0.07 0.36 9.31 3.33 21.35 24.14 0.05 1.24 18.77 6.84
50 25.43 56.68 19.57 79.77 0.17 88.59* 74.76 46.87 0.01 0.01 44.40 16.89 61.46 60.62 0.00 58.41 64.67 14.73
100 58.64 94.78 45.61 99.74 0.13 99.90* 99.59 96.74 55.78 4.24 95.06 28.35 93.39 91.45 47.50 98.63 95.17 48.08
500 100.00 100.00 100.00 100.00 0.09 100.00 100.00 100.00 100.00 100.00 100.00 91.55 100.00 100.00 100.00 100.00 100.00 100.00
t(10) – Skewness = 0, Kurtosis = 1
20 7.40 8.75 6.29 12.58 11.07 9.84 9.94 11.63 7.65 14.54 11.97 0.97 8.80 17.07* 8.51 9.87 16.02 6.90
50 8.50 11.59 6.51 18.92 15.23 15.53 14.54 18.72 17.15 22.80 19.01 4.42 14.00 21.55 20.44 22.53 23.35* 6.88
100 11.14 16.35 7.54 27.39 19.78 24.95 23.37 28.61 28.78 33.79 29.17 3.86 21.92 27.86 33.51 37.82* 32.84 7.50
500 28.45 - 12.28 69.96 26.19 74.37 65.55 71.84 75.16 76.42 74.97 6.50 65.98 65.81 80.12 84.05* 75.54 10.72
t (5) – Skewness = 0, Kurtosis = 6
20 12.55 16.87 9.18 23.39 21.03 18.34 18.83 22.57 16.73 26.19* 22.28 0.94 16.71 23.50 14.46 20.44 26.62 4.52
50 21.25 30.39 12.89 41.15 31.92 37.81 36.07 41.96 40.33 47.95* 42.87 4.46 35.79 39.58 39.05 47.00 47.26 7.85
100 33.42 - 18.34 60.04 40.00 59.63 56.37 62.89 62.90 69.02* 64.10 4.47 58.54 59.73 62.22 71.35 68.79 11.61
500 89.27 - 57.90 99.01 56.30 99.41 98.93 99.22 99.38 99.56 99.41 12.21 99.22 99.15 99.37 99.81* 99.60 26.45
Laplace (0, 1) – Skewness = 0, Kurtosis = 3
20 21.40 26.64 14.63 30.23 25.62 23.82 25.59 31.62 22.13 38.28 30.58 1.04 28.34 32.25 18.50 28.11 43.64* 7.46
50 43.15 54.46 28.04 51.89 35.52 49.66 52.77 60.12 51.44 68.84 56.87 5.96 64.55 64.71 49.88 64.29 76.65* 14.46
100 70.97 83.08 47.55 73.76 40.91 76.35 80.08 84.99 78.09 89.49 80.48 10.14 90.25 89.63 77.33 89.05 94.86* 23.09
500 99.99 - 99.42 99.97 50.17 99.99 100.00 100.00 99.99 100.00 99.99 56.45 100.00 100.00 99.99 100.00 100.00 65.01

*The most powerful test for each sample size.

Table 2: Simulated power for symmetric distributions at 5% significance level.
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even at sample size as small as 30. At n=50, all eighteen tests considered 
had reached at least the 80% threshold except for the KU, BH, BS, 
BHBS, GMG and G. The least powerful was the BS test never achieving 
100% power at n=1000 whereas all other tests have.

Exponential (1) also proved to be a distribution that was easy for 
the tests to identify as non-normal with the SW and SF having power 
above 80% at only n=20. All tests were able to achieve more than 80% 
power at only n=50 except for the KU, BH, BS, BHBS, and GMG. All 
tests however surpassed the 80% threshold at n=100 except for the BS 
which only achieved a 57.70% power at this sample size and proved 
the least powerful never achieving 100% power at n=1000 whereas all 
other tests have.

The SW test proved to be the most powerful under the Log-normal 
alternative distribution achieving a power of 83.73% at n=20, followed 
closely by its modified form the SF (80.13%). All tests surpassed the 80% 
threshold at n=40 except for the BH and BS which only achieved power 
of 65.76% and 69.87% respectively. BHBS, a joint test of the BH and BS 
however proved more powerful than the individual tests by achieving a 
power of 89.52 at n=40. However, BHBS is not recommended as it has 
unacceptable type I error rate.

The result of power on a weibull (2, 2) alternative distribution 
showed that the SW is the most powerful under this distribution. The 
test achieved a power of 79.33% at n=100 which is just a little below 
the 80% rate that is usually described as acceptable. The SW is closely 
followed by the DH (72.64%) and SF (71.64). The AD, DK, SK, JB, 

RJB, BM(1) and BM(2) were also able to achieve at least 80% power at 
n=200. The BS once again proved to be the least powerful among the 
tests under this distribution by only achieving a power of 16.94%.

An asymmetric, short-tailed Gompertz distribution as an alternative 
distribution showed the SK test to be powerful, and a strong rival to the 
popular SW test, however, none of the test was able to achieve 80% 
power until the sample size was increased to 100 at which point all of 
the tests except the LL, CS, KU, BH, BS, GMG and G had surpassed 
the threshold. The BS once more was the least powerful under this 
distribution; despite most of the tests achieving the 80% threshold and 
a significant number of them achieving 100% at n=500, the test was 
only able to achieve 65.88% power.

A weibull (2, 2) distribution also showed RJB as the most powerful 
for sample sizes of 40 or less and SW for larger sample sizes as against 
BHBS for a sample size of 10 and SW for larger sample sizes at the 
5% level. There is however, the most drastic change in the case of the 
Gompertz (0.001,1) distribution at 1% level, where the GMG was the 
most powerful for sample size on 10 and SK for other sample sizes. The 
SK will probably be the most powerful for a sample size of 10 but for 
the unavailability of the SK along with the KU and DK for sample sizes 
less than 20. At the 5% level on the other hand, the RJB was the most 
powerful for sample sizes of 40 or less and BM (2) for larger sample 
sizes.

As it is clear from the above discussions that all these tests 
behave differently depending on the alternative distribution under 

Gamma (4, 5)  – Skewness = 1, Kurtosis = 4
N LL AD CS DK SK KU SW SF JB RJB DH BH BS BHBS BM(1) BM(2) GMG G
20 17.99 25.04 12.80 25.33 29.06 15.23 29.35* 28.72 16.66 25.01 23.36 1.86 8.98 15.93 13.95 22.88 19.18 5.10
50 41.17 59.08 27.29 55.34 67.21 27.16 69.45* 65.96 49.68 53.87 63.88 14.18 14.10 26.52 47.69 65.19 29.40 11.56
100 70.50 89.38 51.49 88.10 94.15 39.31 95.81* 94.38 86.83 84.90 94.74 25.54 17.19 37.93 85.79 94.71 37.72 28.81
500 100.00 - 99.98 100.00 100.00 89.89 100.00 100.00 100.00 100.00 100.00 93.18 40.14 95.54 100.00 100.00 78.55 99.84
Chi-square (3) – Skewness = 1.63, Kurtosis = 4
20 41.37 58.54 41.52 48.03 56.67 27.68 65.81* 62.43 35.86 46.78 54.81 6.68 15.33 22.63 38.74 49.12 35.69 15.01
50 82.14 96.42 84.91 88.63 95.33 52.12 98.87* 98.05 86.37 86.50 97.17 41.66 27.07 56.44 91.32 96.17 57.83 59.96
100 99.11 99.99 99.56 99.97 99.93 75.37 100.00 100.00 99.92 99.71 100.00 75.32 42.01 85.26 100.00 100.00 76.92 98.64
500 100.00 - 100.00 100.00 100.00 99.95 100.00 100.00 100.00 100.00 100.00 100.00 89.71 100.00 100.00 100.00 99.79 100.00
Exponential (1) – Skewness = 2, Kurtosis = 6
20 58.02 77.82 66.21 60.58 70.32 36.38 83.73* 80.15 48.38 59.55 73.27 14.74 20.46 32.04 43.54 65.46 46.95 28.66
50 96.32 99.70 98.44 96.42 98.82 66.25 99.95* 99.84 95.63 95.02 99.63 66.17 38.29 77.95 94.79 99.42 74.15 90.73
100 100.00 100.00 100.00 100.00 100.00 88.86 100.00 100.00 100.00 99.99 100.00 94.51 57.70 97.51 100.00 100.00 91.64 99.99
500 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.55 100.00 100.00 100.00 100.00 100.00
Log-Normal (0, 1) – Skewness = 6.18, Kurtosis = 113.94
20 78.59 90.30 82.36 79.82 86.91 59.63 93.10* 91.67 71.53 80.43 88.43 21.71 41.48 54.33 67.68 84.36 71.66 52.75
50 99.52 99.99 99.75 99.70 99.91 90.88 100.00 100.00 99.59 99.48 100.00 80.16 77.62 95.05 99.48 99.98 95.52 97.92
100 100.00 - 100.00 100.00 100.00 99.62 100.00 100.00 100.00 100.00 100.00 98.41 96.05 99.87 100.00 100.00 99.81 100.00
500 100.00 - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Weibull (2, 2)  – Skewness = 0.63, Kurtosis = 0.25
20 9.72 12.55 8.01 13.06 14.44 8.64 15.13* 14.10 6.63 12.14 10.41 1.48 5.81 13.24 5.35 9.97 11.04 3.60
50 20.75 31.11 13.71 28.29 37.62 13.10 41.47* 36.02 21.25 24.84 33.37 8.77 7.14 18.10 19.78 35.24 13.78 6.20
100 38.78 60.46 25.45 56.37 69.28 15.57 79.33* 71.64 50.06 47.50 72.64 13.80 8.58 22.05 48.25 72.93 14.79 12.64
500 98.71 100.00 98.30 100.00 100.00 24.71 100.00 100.00 100.00 100.00 100.00 67.76 12.27 69.02 100.00 100.00 15.72 99.07
Gompertz (0.001, 1) – Skewness = -1, Kurtosis = 1.5
20 18.57 26.21 12.68 28.62 31.71* 16.71 30.00 30.45 19.23 28.67 25.44 2.20 9.92 17.49 16.24 25.56 22.06 5.03
50 41.23 57.81 24.89 58.39 68.09* 29.77 66.80 65.27 53.30 58.08 62.51 13.42 16.46 29.14 51.39 65.75 34.79 10.47
100 70.46 87.48 45.79 87.97 94.22* 46.68 93.49 92.40 87.28 86.98 92.56 25.69 23.46 42.58 86.46 93.54 48.16 22.62
500 100.00 100.00 99.90 100.00 100.00 96.22 100.00 100.00 100.00 100.00 100.00 92.55 65.88 97.63 100.00 100.00 92.56 94.33

*The most powerful test for each sample size.

Table 3: Simulated power for asymmetric distributions at 5% significance level.
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Normality 
Test

Value of test 
statistic

P-value 
(or Critical 

Value)

Reject Normality or Do not reject 
at α = 5%

LL 0.2398 0.0019 Reject
AD 1.2453 0.0023 Reject
CS 15.6364 0.0013 Reject
DK 5.5303 0.063 Do not reject
SK 2.238 0.0252 Reject
KU 0.7222 0.4702 Do not reject
SW 0.9091 0.2378 Do not reject
SF 0.9129 0.2244 Do not reject
JB 4.141 0.1261 Do not reject

RJB 7.9721 0.0186 Reject
DH 8.9722 0.0113 Reject
BH 8.8778 0.031 Reject
BS -0.126 0.8997 Do not reject

BHBS 11.5494 0.021 Reject
BM(1) 3.6023 0.1651 Do not reject
BM(2) 7.5541 0.0229 Reject
GMG 1.0968 0.0439 Reject

G 0.121 -0.0714 Reject

Table 4: Test Results from Postmortem interval data.
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Figure 1: Theoretical quantiles.

consideration. Even though the BHBS, BM(2) and GMG showed 
powerful in certain situations, they are not recommended for testing 
for normality as they do not effectively control for type I error rate. 
The results are in good agreement with those obtained in Yap and Sim 
[22]. A general and expected pattern was observed that as sample size 
increases the power of the test also increases for all tests.

Application
This section highlights the illustration of the performance of the 

tests using a real life example of medical data. The postmortem interval 
(PMI) is defined as the elapsed time between death and an autopsy. 
Knowledge of PMI is considered essential when conducting medical 
research on human cadavers. The following data (Data Source: Hayes 
and Lewis [30]) are PMIs of 22 human brain specimens obtained at 
autopsy in a recent study:

5.5, 14.5, 6.0, 5.5, 5.3, 5.8, 11.0, 6.1, 7.0, 14.5, 10.4, 4.6, 4.3, 7.2, 10.5, 
6.5, 3.3, 7.0, 4.1, 6.2, 10.4, 4.9.

The sample is positively skewed with skewness=0.99 and short-
tailed with kurtosis=-0.16,

mean=7.30, SD=3.18 and sample size is 22. The QQ plot of PMI 
data is given below, which certainly indicates that the data are not 
symmetric (Figure 1).

The computed values of the test statistics along with their p-values 
and decisions are presented in Table 4. This dataset was originally 
modeled by a gamma distribution with shape parameter α=5.25 
and scale parameter β=1.39, so one may assume that the hypothesis 
of normality will be rejected, however, seven of the eighteen test 
considered failed to reject this hypothesis including the popular DK, 
SW and SF tests. It can be noted that the coefficient of kurtosis of the 
data is 0.16 and close enough to that of a normal distribution.

Summary and Conclusions
We have considered eighteen different tests of normality comprising 

the most popular along with some of the recently proposed tests. The 
performance was measured in terms of type I error rate and power 
of the test [31,32]. The type I error rate is the rate of rejection of the 
hypothesis of normality for data from the normal distribution while the 
power of the test is the rate of rejection of normality hypothesis for data 
generated from a non-normal distribution. We have considered both 
symmetric and asymmetric distributions in the simulation study. Based 
on the simulation results we have found several useful test statistics for 
testing the normality. However, the Kurtosis Test is the most powerful 
for symmetric data and Shapiro Wilk test [33] is the most powerful for 
asymmetric data among all the methods with acceptable type I error 
rate. The findings of this paper are in good agreement with Yap and 
Sim [22], but Kurtosis test and Skewness test were not included in their 
paper. Interestingly, the kurtosis test turned out to be the best test for 
symmetric distributions and the Skewness test performs well for both 
symmetric and asymmetric distributions.

Acknowledgements

Authors are thankful to referees for their comments that certainly improved the 
presentation of the paper.

References

1. Snedecor GW, Cochran WO (1989) Statistical methods. (8 edition), Iowa State 
University Press. 

2. Pearson K (1900) On the criterion that a given system of deviations from the 
probable in the case of a correlated system of variables is such that it can 
be reasonably supposed to have arisen from random sampling. Phil Mag 50: 
157-175. 

3. Kolmogorov A (1933) On the empirical determination of a distribution law. G is 
Ital Attuari 4: 83-91.

4. Anderson TW, Darling DA (1952) Asymptotic theory of certain "Goodness of 
Fit" criteria based on stochastic processes. Ann Math Statist 2: 193-212. 

5. Lilliefors HW (1967) On the Kolmogorov-Smirnov test for normality with mean 
and variance unknown. Journal of the American Statistical Association 62: 
399-402.

6. Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete 
samples). Biometrika 52: 591-611. 

7. Althouse WB, Ferron JM (1998) Detetcting departures from Normality. A Monte 
Carlo Simulation of a new Omnibus test based on moments. ERIC ED422385. 
Paper presented at the Annual Meeting of the American Educational Research 
Association.

8. Dagostino RB (1971) An Omnibus Test of Normality for Moderate and Large 
Size Samples. Biometrika 58: 341-348.

9. Shapiro SS, Francia RS (1972) An approximate analysis of variance test for 
normality. Journal of the American Statistical Association 67: 215-216.

http://link.springer.com/chapter/10.1007%2F978-1-4612-4380-9_2
http://link.springer.com/chapter/10.1007%2F978-1-4612-4380-9_2
http://link.springer.com/chapter/10.1007%2F978-1-4612-4380-9_2
http://link.springer.com/chapter/10.1007%2F978-1-4612-4380-9_2
http://link.springer.com/chapter/10.1007%2F978-94-011-2260-3_15
http://link.springer.com/chapter/10.1007%2F978-94-011-2260-3_15
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1214/aoms/1177729437
https://www.jstor.org/stable/2283970?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2283970?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2283970?seq=1#page_scan_tab_contents
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/shapiro1965.pdf
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/shapiro1965.pdf
http://eric.ed.gov/?id=ED422385
http://eric.ed.gov/?id=ED422385
http://eric.ed.gov/?id=ED422385
http://eric.ed.gov/?id=ED422385
http://biomet.oxfordjournals.org/content/58/2/341.abstract
http://biomet.oxfordjournals.org/content/58/2/341.abstract
https://www.researchgate.net/publication/220019901_An_Approximate_Analysis_of_Variance_Test_for_Normality
https://www.researchgate.net/publication/220019901_An_Approximate_Analysis_of_Variance_Test_for_Normality


Citation: Adefisoye JO, Golam Kibria BM, George F (2016) Performances of Several Univariate Tests of Normality: An Empirical Study. J Biom Biostat 
7: 322. doi:10.4172/2155-6180.1000322

Page 8 of 8

Volume 7 • Issue 4 • 1000322J Biom Biostat, an open access journal
ISSN: 2155-6180

10. Royston P (1993) A pocket-calculator algorithm for the Shapiro-Francia test for 
non-normality: an application to medicine. Statistics in Medicine 12: 181-184.

11. Jarque CM and Bera AK (1987) A test for normality of observations and 
regression residuals. International Statistical Review 55: 163-172.

12. Doornik JA, Hansen H (2008) An Omnibus test for univariate and multivariate 
normality. Oxford Bulletin of Economics and Statistics 70: 927-939.

13. Bai J, Ng S (2005) Tests for Skewness, Kurtosis, and Normality for Time Series 
Data. Journal of Business & Economic Statistics. 

14. Gel YR, Gastwirth JL (2008) A robust modification of the Jarque-Bera test of 
normality. Economics Letters 99: 30-32.

15. Brys G, Hubert M, Struyf A (2004) A robustification of the Jarque-bera test of 
normality. A delivery at the COMPSTAT’2004 Symposium.

16. Bonett DG, Seier E (2002) A test of normality with high uniform power. 
Computational Statistics & Data Analysis 40: 435-445.

17. RomaoX, Delgado R, Costa A (2010) An empirical power comparison of 
univariate goodness-of-fit tests for normality. Journal of Statistical Computation 
and Simulation 5: 545-591. 

18. Bontemps C, Meddahi N (2005) Testing normality: a GMM approach. J Econom 
124: 149-186.

19. Gel YR, Miao W, Gastwirth JL (2007) Robust directed tests of normality against 
heavy-tailed alternatives. Computational Statistics & Data Analysis 51: 2734-
2746.

20. Chen Z, Ye C (2009) An alternative test for uniformity. International Journal of 
Reliability, Quality and Safety Engineering 16: 343-356.

21. Thode HC (2002) Testing for Normality. Marcel Dekker, New York.

22. Yazici B, Yolacan S (2007) Comparisons of various types of normality tests. 
Journal of statistical computation and simulation 77: 175-183.

23. Yap BW, Sim CH (2011) Comparisons of various types of normality tests. 
Journal of statistical computation and simulation 81: 2141-2155.

24. Conover WJ (1999) Practical Nonparametric Statistics. (3rd edition), Wiley,
Newyork.

25. Stephens MA (1976) Asymptotic Results for Goodness-of-Fit Statistics with 
Unknown Parameters. Annals of Statistics 4: 357-369.

26. Pearson AV, Hartley HO (1972) Biometrica tables for statisticians. Cambridge 
University Press, England.

27. Royston P (1983) A simple method for evaluating Shapiro-Francia test for non-
normality. The Statistician 32: 297-300.

28. Bowman KO, Shenton LR (1977) A bivariate model for the distribution of b1 and 
b2. Journal of the American Statistical Association 72: 206-211.

29. R Core Team (2013) R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. 

30. Hayes TL, Lewis DA (1995) Anatomical specialization of the anterior motor 
speech area: hemispheric differences in magnopyramids neurons. Brain and 
Language 49: 292.

31. Bai ZD, Chen L (2003) Weighted W test for normality and asymptotic a revisit of 
Chen–Shapiro test for normality. Journal of Statistical Planning and Inference 
113: 485- 503.

32. Brys G, Hubert M, Struyf A (2007) Goodness-of-fit tests based on a robust 
measure of skewness. Comput Stat 23: 429-442. 

33. Shapiro SS (1980) How to test normality and other distributional assumptions. 
In: The ASQC basic references in quality control: statistical techniques 3: 1-78.

http://onlinelibrary.wiley.com/doi/10.1002/sim.4780120209/abstract
http://onlinelibrary.wiley.com/doi/10.1002/sim.4780120209/abstract
https://www.jstor.org/stable/1403192?seq=1#page_scan_tab_contentshttp://www.jstor.org/discover/10.2307/1403192?uid=3739400&uid=2&uid=3737720&uid=4&purchase-type=both&accessType=RR&sid=21103396774841&showMyJstorPss=false&seq=1&showAccess=true
https://www.jstor.org/stable/1403192?seq=1#page_scan_tab_contentshttp://www.jstor.org/discover/10.2307/1403192?uid=3739400&uid=2&uid=3737720&uid=4&purchase-type=both&accessType=RR&sid=21103396774841&showMyJstorPss=false&seq=1&showAccess=true
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0084.2008.00537.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1468-0084.2008.00537.x/abstract
http://dx.doi.org/10.1198/073500104000000271
http://dx.doi.org/10.1198/073500104000000271
https://ideas.repec.org/a/eee/ecolet/v99y2008i1p30-32.html
https://ideas.repec.org/a/eee/ecolet/v99y2008i1p30-32.html
https://www.researchgate.net/publication/257151790_A_robustification_of_the_Jarque-Bera_test_of_normality
https://www.researchgate.net/publication/257151790_A_robustification_of_the_Jarque-Bera_test_of_normality
http://dl.acm.org/citation.cfm?id=608447
http://dl.acm.org/citation.cfm?id=608447
https://www.researchgate.net/publication/233163529_An_empirical_power_comparison_of_univariate_goodness-of-fit_tests_for_normality
https://www.researchgate.net/publication/233163529_An_empirical_power_comparison_of_univariate_goodness-of-fit_tests_for_normality
https://www.researchgate.net/publication/233163529_An_empirical_power_comparison_of_univariate_goodness-of-fit_tests_for_normality
http://www.cirano.qc.ca/pdf/publication/2002s-63.pdf
http://www.cirano.qc.ca/pdf/publication/2002s-63.pdf
http://dl.acm.org/citation.cfm?id=1221698
http://dl.acm.org/citation.cfm?id=1221698
http://dl.acm.org/citation.cfm?id=1221698
http://www.worldscientific.com/doi/abs/10.1142/S0218539309003435
http://www.worldscientific.com/doi/abs/10.1142/S0218539309003435
http://www.originlab.com/doc/Origin-Help/Normality-Test
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471160687.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471160687.html
http://projecteuclid.org/euclid.aos/1176343411
http://projecteuclid.org/euclid.aos/1176343411
https://www.amazon.com/Biometrika-Tables-Statisticians-v-Pearson/dp/0521059208
https://www.amazon.com/Biometrika-Tables-Statisticians-v-Pearson/dp/0521059208
https://www.jstor.org/stable/2987935
https://www.jstor.org/stable/2987935
https://www.jstor.org/stable/2286939?seq=1#page_scan_tab_contents
https://www.jstor.org/stable/2286939?seq=1#page_scan_tab_contents
http://www.R-project.org/
http://www.R-project.org/
http://documentslide.com/documents/weighted-w-test-for-normality-and-asymptotics-a-revisit-of-chenshapiro-test.html
http://documentslide.com/documents/weighted-w-test-for-normality-and-asymptotics-a-revisit-of-chenshapiro-test.html
http://documentslide.com/documents/weighted-w-test-for-normality-and-asymptotics-a-revisit-of-chenshapiro-test.html
http://link.springer.com/article/10.1007/s00180-007-0083-7
http://link.springer.com/article/10.1007/s00180-007-0083-7
http://asq.org/quality-press/display-item/index.html?item=E3503&xvl=76EB_E3503
http://asq.org/quality-press/display-item/index.html?item=E3503&xvl=76EB_E3503

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction 
	Statistical Methods 
	Lilliefor’s test [LL] 
	Anderson-Darling test [AD] 
	Chi-Square test [CS] 
	Skewness test [SK] 
	Kurtosis test [KU] 
	D’Agostino-Pearson K2 test [DK] 
	Shapiro-Wilk test [SW] 
	Shapiro-Francia [SF] 
	Jarque-Bera test [JB] 
	Robust Jarque-Bera test [RJB] 
	Doornik-Hansen test [DH] 
	Brys-Hubert-Struyf MC-MR test [BH] 
	Bonett-Seier test [BS] 
	Brys-Hubert-Struyf-Bonett-Seier Joint test [BHBS] 
	Bontemps-Meddahi tests [BM(1) and BM(2)] 
	Gel-Miao-Gastwirth test [GMG] 
	G test [G] 

	Simulation
	Simulation techniques 
	Discussion of simulation results 

	Application 
	Summary and Conclusions 
	Acknowledgements
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4
	References 

