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Ovarian Cancer
Ovarian cancer is the fifth leading cause of cancer deaths in women 

and is the most lethal of the gynecological malignancies [1,2]. In 2011, it 
is estimated that 21,990 women in the US will be diagnosed with ovarian 
cancer and that 15,450 women will die from the disease [3]. Ovarian 
cancer is an aggressive disease that is characterized by a symptom free 
onset and early metastasis. Neoplastic cells rapidly invade surrounding 
tissues through the peritoneal fluid and metastasize predominantly as 
fluid containing ascites in the peritoneal cavity [4,5]. Approximately 
85% of patients are diagnosed at late-stage disease, which leads to 
significantly decreased five-year survival rates of merely 30-45% [1,2]. 
Furthermore, ovarian cancer often develops resistance to therapy 
after initial platinum-based treatment, and even though most patients 
respond to chemotherapy, the majority relapse within 18 months and 
succumb to disease [1,6-8].

Ovarian cancer is a very heterogeneous disease that comprises 
three major types: epithelial, stromal and germ cell of which the former 
represents about 95% of diagnosed cases. Epithelial ovarian cancer 
can be further divided into eight subtypes: endometrioid, mucinous, 
serous, clear cell, transitional, squamous, undifferentiated and mixed 
epithelial that each exhibit different molecular and morphological 
characteristics [7,9-11]. In addition to the large diversity among ovarian 
cancer subtypes the largely asymptomatic early stages of the disease 
complicates diagnosis and treatment. At present, standard detection 
methods include measurement of the serum tumor-marker CA-125 
(Mucin 16) as well as pelvic ultrasonography [12-14]. However, CA-
125 levels are often negligible in early-stage disease and elevated in 
only 80% of advanced stage ovarian cancer. In addition, false positive 
CA-125 levels are common for a range of other conditions such as 
endometriosis, inflammatory disease and other cancers, and the method 
is, therefore, often not sufficient to be diagnostic. Ultrasonography of 

the pelvis is often used in combination with CA-125 levels to diagnose 
ovarian cancer, nevertheless, early stage tumors are difficult to detect 
using this method, and false-positives often arise due to benign cysts 
related to overactive ovaries [12-16]. Several attempts have been made 
to find novel serum tumor markers of early-stage ovarian cancer, 
including measurements of soluble epidermal growth factor receptor 
(sEGFR) [17,18], soluble cytokeratin 19 fragments [19], serum human 
kallikreins [20-23] and serum vascular endothelial growth factor 
(VEGF) [24,25]. However, most of these biomarkers are limited to 
advanced stage or metastatic disease and are, therefore, not sufficiently 
sensitive for early-stage ovarian cancer screening and diagnosis. For 
these reasons, it is necessary to develop new detection methods for 
both early- and advanced stage ovarian cancer. 

Treatment of ovarian cancer most often includes cytoreductive 
surgery followed by a range of chemotherapeutic therapies dependent 
on disease stage [1,6]. Combinations of the drugs paclitaxel, 
carboplatin, cisplatin and cyclophosphamide are often used to treat 
both early and late-stage disease following surgery and most patients 
respond to this treatment. Nonetheless, the majority of patients relapse 
within 18 months with therapy resistant disease, which cause median 
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Abstract
Ovarian cancer is a very aggressive disease that is mostly asymptomatic at early onset. Approximately 85% 

of patients are diagnosed at late-stage disease, which greatly compromises full recovery. Standard detection 
methods include measurement of the ovarian cancer biomarker CA-125. However, CA-125 is associated with false 
positive diagnosis and is largely limited to late-stage disease. As a result, there is a great need to discover new 
biomarkers and develop novel detection and imaging methods for ovarian cancer. Patients with ovarian cancer 
often respond to initial chemotherapy but most will succumb to recurrent disease. Such poor prognosis is associated 
with a drug resistant subpopulation of cancer cells with stem-like properties known as cancer stem cells (CSC). 
Traditional chemotherapy fails to target CSC, and it is widely accepted that this process leads to the recurrence of 
more aggressive tumors. Therefore, it is essential to discover new ovarian CSC biomarkers and develop therapies 
that specifically target this subpopulation. Bacteriophage (phage) display technology allows identification of high 
affinity peptides by screening of peptide libraries against cellular targets. The large amount of unique peptides in 
a library facilitates high throughput selections both in vivo and in vitro. Here we discuss how phage display can be 
utilized to discover novel peptides with high binding affinity for normal ovarian cancer cells and ovarian CSC. Such 
peptides may be radiolabeled and employed in SPECT and PET imaging as well as in therapeutic settings. Further, 
both phage and phage display derived peptides can be employed in identification of targeted antigens and novel 
ovarian cancer biomarkers using mass spectrometry analysis. Such biomarkers may be utilized in diagnosis and in 
identification and selection of ovarian cancer subpopulations.
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survival times as low as 24 months post diagnosis [1,6-8,26]. Such poor 
prognosis seems to result from chemotherapy treatment that targets 
only the bulk of the tumor cells and fails to target the more aggressive 
cancer initiating cells (CIC) or cancer stem cells (CSC). This process 
most likely causes the occurrence of more aggressive tumors that are 
resistant to therapy (Figure 1) [27-29].

Ovarian Cancer Stem Cells
Cancer stem cells were first observed in acute myeloid leukemia 

[30] and have since been discovered in several solid tumors including 
breast, prostate, melanoma and ovarian cancer [31-34]. Ovarian 
CSC were first isolated by Bapat and co-workers (2005) from ascites 
in a patient with advanced disease. The cells were shown to display 
the stem cell surface markers CD44 (hyaluronic acid receptor) and 
CD117 (ckit) as well as the intracellular stem cell markers Nestin, 
Oct-4 and Nanog [31,35]. Later, ovarian CSC were found to express 
aldehyde dehydrogenase (ALDH) and the cell surface marker CD133 
(prominin-1), [36,37]. The expression of these CSC biomarkers has 
been correlated with increased resistance to chemotherapeutic drugs. 
In fact, CD44 positive cells have been associated with resistance to the 
chemotherapeutic drugs carboplatin and paclitaxel [35], and CD133 
expression has been correlated with resistance to cisplatin [37]. A 
subpopulation of cells expressing the biomarkers CD44 and CD117 
from primary human ovarian tumors were shown to form floating 
spheroids in culture when grown under stem cell conditions (serum 
free, EGF, bFGF and insulin). The spheroids visually resembled 
spheroids found in ovarian cancer ascites [28,31] as well as cultured 
spheroids from breast and neural tissue stem cells [38,39]. Later CD133 
and ALDH positive cells from ovarian epithelial carcinomas were also 
shown to form spheroids in culture and in addition cause larger and 
more rapid tumors to form compared to CD133 and ALDH negative 
cells [36]. The aggressiveness of CSC is also evident from their ability 
to initiate tumor formation. In fact, as few as 100 dissociated spheroid 
cells have been found to cause full establishment of tumors in mice, 
whereas up to 105 of unselected cells were unable to initiate tumor 
growth [40]. In addition, these cells were able to serial propagate and 
established heterogeneous tumors with original phenotype after several 
rounds of propagation. The chemoresistance of CSC is associated with 
expression of the membrane efflux transporter ABCG2 [27,41,42], 
which has been found to be upregulated in CSC from primary ovarian 
tumors and in both murine and human ovarian cancer cell lines 
[27,40,43]. Increased drug-efflux in CSC has been based on their ability 
to efflux the lipophillic dye Hoechst 33342 [27,28,44]. Side populations 
of mouse ovarian cancer cells exhibiting reduced Hoechst 33342 
staining have been shown to increase tumorigenesis in nude mice 
[28]. A side population has also been observed in the human ovarian 
cancer cell line SK-OV-3, where approximately 10% of the cells showed 
reduced Hoechst 33342 staining [27]. Taking these results together it 
seems likely that the development of molecules that target CSC may 
hold the key to increase the therapeutic efficiency for ovarian cancer. So 
far most studies have focused on drug candidates that inhibit cellular 
signaling pathways [45], however, it may be necessary to target CSC 
cell surface biomarkers that are independent of the ABCG2 drug-efflux 
system. Cancer stem cell targeting radiolabeled peptides may provide 
an efficient method to eradicate the CSC subpopulation.

Bacteriophage Display

Bacteriophage (phage) display technology was first developed by 
Dr. George Smith in 1985 [46]. The technology involves the expression 
of combinatorial peptide libraries on filamentous phage coat proteins. 
Every phage in a library expresses a unique peptide, and this diversity 
can be used to screen phage libraries against in vitro or in vivo targets 

[46-48]. A typical phage display library contains up to 109 different 
phage clones, each displaying a random type of peptide. The large 
number of different peptides in a library makes phage display a high 
throughput method for affinity selections. The best characterized 
of the filamentous phage is the Ff class, which include the M13, fd 
and f1 viruses that are structurally very similar and 98% identical at 
the DNA level. Structurally, the Ff class of phage resembles a flexible 
rod, which measures ~0.9 μm in length and ~65 Å in diameter. The 
Ff genome is approximately 6.4 kb large (ssDNA) and encodes 11 
proteins of which five are structural. Two of these are coat protein III 
(cpIII) and coat protein VIII (cpVIII). Both are surface exposed and 
are, for this reason, used to display the foreign peptides on the phage 
surface [46-48]. One of the most common phage display vector systems 
is the fUSE5 vector, which displays up to five copies of the peptides on 
cpIII. Another commonly used phage display vector is the f88-4 vector 
system, which displays several hundred copies of the peptide on cpVIII. 
Experimentally, the phage display library is most often screened against 
an antigen of interest using several rounds of affinity selection, elution 
and amplification. The amplification step is relatively straight forward 
in that the Ff class of phage infects gram-negative bacteria, such as E. 
coli, and uses the bacterial machinery to produce progeny phage, which 
are released without lysis through the bacterial plasma membrane [46-
51,52,2,53]. Phage display technology has been employed to discover 
novel peptides that bind cancer cells. For example, RGD-peptides 
have been developed that target the tumor vasculature by binding to 
αvβ3-integrin (vitronectin receptor) [54,55]. The SGRSA peptide has 
been found to have high binding affinity to urokinase plasminogen 
activator (uPA) [56] and the peptide CGNSNPKSC to bind to gastric 
cancer endothelium [57]. Our laboratory has developed a number of 
peptides that target cancer cells. Among these are the peptide KCCYSL 
that binds to the ErbB-2 (HER2/neu) receptor [58,59], which is a 
member of the EGF receptor family and is upregulated in both ovarian 
and breast carcinoma. The HER2/neu oncogene is overexpressed in 
approximately 15-30% of ovarian carcinomas and is associated with 
an increased risk of progression and death, especially among women 
diagnosed with stage I and II ovarian carcinoma [60,61]. In addition, 
the peptides IAGLATPGWSHWLAL and ANTPCGPYTHDCPVKR 
were selected for binding to the prostate carcinoma cell line PC-3 

Figure 1: Traditional and CSC targeted therapies in ovarian cancer. A) 
Traditional chemotherapy fails to target CSC, which allows successive 
regrowth of the tumor. B) CSC targeted therapy in combination with traditional 
chemotherapy eradicates both tumor populations and hinder tumor recurrence.
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[62,63] and galectin-3, respectively [64-67]. Furthermore, a number of 
peptides have been developed that bind to the Thomsen-Friedenreich 
(TF) carbohydrate antigen, which is present on approximately 90% of 
human carcinoma cells and is involved in cell adhesion and migration 
[68-71]. Most of these tumor targeting peptides have been developed 
to function as imaging and/or therapeutic agents of human cancers. 
Radiolabeling of tumor targeting peptides provides an effective method 
of eradicating cancer cells as well as imaging tumors in vivo using 
technologies such as single photon emission computed tomography 
(SPECT) and positron emission tomography (PET).

New Ovarian Cancer Cell Targeting Peptides

In order to efficiently select ovarian targeting peptides with high 
affinity for a tumor and desirable pharmacokinetics, it is important to 
initially pre-clear the phage display library from peptide motifs that 
bind to normal vasculature. This may be accomplished by intravenously 
injecting non-tumor bearing mice with an appropriate volume of > 
1014 virions/mL of phage library followed by a 15 minute incubation 
time. Mice are then sacrificed, the blood harvested and unbound phage 
amplified and purified for further rounds of selection. For in vivo 
selections against ovarian carcinoma, our laboratory has used SCID 
mice carrying SK-OV-3 human carcinoma cell xenografted tumors. 
After injection of pre-cleared phage library tumor bound phage may 
be eluted after excision by using detergents. Amplified and purified 
phage may then be used for further rounds of in vivo/ex vivo selections 
[53,62,72]. Selected phage clones may be additionally analyzed 
for their binding affinity by micropanning experiments in which 
phage are incubated with different carcinoma and normal cell lines. 
Phage binding affinity may be evaluated by comparing the number 
of infectious units (TU/mL) between the cancerous and normal cell 
lines. In order to analyze the binding affinities of peptides outside of 
the phage environment, biotinylated or radiolabeled peptides may be 
synthesized and used in in vitro/in vivo binding studies [62,73]. 

In vivo selection of ovarian carcinoma specific peptides can be an 
inefficient procedure.  One potential barrier is the presence of many 
tissue types within the tumor, endothelial cells, connective tissue, 
etc.  Determination/selection of the targeted tissue for each selected 
peptide can be difficult when the in vivo milieu is so complex.  Thus, 
an additional round of ex vivo selection may be added to try and select 
peptides that bind directly to ovarian carcinoma tumor cells.  For 
this purpose MACS® technology may be utilized to separate ovarian 
carcinoma tumor cells from undesired tissue types.  In order to 
avoid non-specific binding of phage, the phage may first be selected 
negatively against the MACS column and streptavidin labeled magnetic 
beads. Cells from excised human ovarian carcinoma tumors from 
xenografted mice may then be labeled with a mixture of biotinylated 
antibodies against known ovarian cancer biomarkers and then bound 
to streptavidin magnetic beads. Cells can then be loaded onto a MACS 
separation column and incubated with phage from previous selection 
rounds. Bound phage can be eluted from cells using detergents and 
subsequently amplified and purified. A good candidate for a known 
ovarian cancer biomarker includes the epithelial cell adhesion molecule 
(EpCAm; CD326), which is overexpressed in a variety of carcinomas, 
as well as normal epithelial tissues. Overexpression is present in ~70% 
of ovarian carcinomas and is significantly related to a decreased overall 
survival [74]. Another known ovarian cancer marker is CA-125 (Mucin 
16) that is an ovarian cancer-associated antigen, and is, as described 
above, used as a serum biomarker for ovarian cancer. CA-125 is the 
extracellular domain (ECD) of the cell surface protein MUC16 and 
levels of the protein are known to increase with disease stage [75]. 

ErbB-2 (HER2/neu) is a member of the EGF receptor family and is 
also overexpressed in both ovarian and breast carcinoma. The HER2/
neu oncogene is overexpressed in approximately 15-30% of ovarian 
carcinomas and is associated with an increased risk of progression and 
death, especially among women diagnosed with stage I and II ovarian 
carcinoma, which makes it an interesting cell surface biomarker for 
ovarian cancer [60,61]. 

New Ovarian Cancer Stem Cell (CSC) Targeting Peptides

Selection of phage display derived peptides with high binding 
affinity for ovarian CSC is complicated by the fact that CSC only 
represents a small percentage of the entire tumor mass [28,31]. Thus 
CSC must initially be selected and separated from the remaining regular 
cancer cells. This may be done, as described above, utilizing MACS® 
technology using antibodies against known ovarian CSC biomarkers 
such as CD44, CD117 and CD133 [31,35-37]. Alternatively, CSC can 
be selected by growing ovarian cancer cells in stem cell appropriate 
medium [35,43]. Successful separation of CSC may be visualized by 
formation of spheroids in culture and staining with antibodies against 
ovarian CSC biomarkers. It may be advisable to further select CSC 
using flow cytometry cell sorting using antibodies against the known 
ovarian CSC biomarkers [28,43]. Further, normal cancer cells may be 
separated during this process and used for negative selections.

Even though the nature of CSC prevents selection of phage display 
derived peptides in vivo, pre-clearing of the phage display library may 
still be performed in non-tumor bearing mice as described above. 
In the early stages of selections, it is also important to consider the 
tumor microenvironment in that CSC comprise only a small part of 
the tumor bulk [28,31]. Thus in order to ensure specific binding, the 
library may be further pre-cleared against normal ovarian cancer cells 
before selecting for binding to CSC. Such a selection should be done 
ex vivo using cultured normal tumor tissue, and may be performed 
by utilizing MACS® technology as previously described. However, 
if the normal cancer cells have already been separated from CSC 
using flow cytometry, it will be sufficient to use non-labeled cells in 
suspension. Experimentally, it may be difficult to obtain large numbers 
of ovarian CSC, and it can be essential to cultivate CSC in appropriate 
stem cell medium [28,31,35,43] after separation from the tumor bulk. 
Cultured ovarian CSC form three dimensional spheroids in stem cell 
medium and it may be necessary to dissociate the cells to a single-
cell suspension for the phage display selection. For the selection, the 
MACS® technology may be employed by labeling ovarian CSC with 
antibodies against the known biomarkers CD44, CD117 and CD133 
[31,35-37]. Alternatively, CSC in suspension or grown on plates can 
be used instead. It is important to note that cells grown under such 
conditions must be tested for the presence of ovarian CSC biomarkers 
before selection in order to ensure that cells have not differentiated. 
Furthermore, it is imperative to use a large number (> 1013 virions) of 
phage in the first selection rounds in order to guarantee high diversity 
of phage clones [76]. After initial rounds the amount of phage may be 
lowered to increase selection stringency. As described above, selected 
phage clones may be further analyzed for their binding affinity by 
micropanning experiments in which phage are incubated with normal 
ovarian cancer cells and ovarian CSC. Once high binding clones have 
been identified, biotinylated or radiolabeled peptides can be synthesized 
and analyzed for their tumor targeting abilities [62,73]. Peptides with 
high binding affinity for CSC will most likely not be applicable as 
imaging agents due to the low percentage of CSC in a tumor. However, 
the chemotherapeutic abilities of such radiolabeled peptides can be 
evaluated in in vivo therapy studies using xenografted mice [77-80]. 
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Most likely, radiolabeled peptides for CSC tumor therapy must be 
combined with other forms of chemotherapy, such as more traditional 
platinum based drugs, in order to eradicate all cells in a tumor [81]. 
Thus, in a mouse therapy study it may be necessary to compare the 
therapeutic effects of drugs such as carboplatin and paclitaxel, which 
are standard in current ovarian cancer treatment, the effects of the 
radiolabeled peptide as well as a combined approach. 

Radiolabeled Peptides for Tumor Imaging and Therapy 

While antibodies and their fragments are by far the most used cancer 
targeting imaging and therapeutic agents [82], peptides exhibit better 
biodistribution properties. Antibodies often cause drug resistance, 
have long biodistribution times and clear through the hepatobiliary 
system, whereas peptides show low immunogenicity, rapid blood-
clearance and are excreted in the urine [83-87]. High kidney uptake 
has, however, been observed with peptides, which poses a problem in 
regard to tumor imaging near the kidney and with toxicity caused by 
accumulation of therapeutic radiolabeled peptides [82,86-88]. Thus 
lowering renal uptake is important and may be done by changing parts 
of the peptide sequence, trying different radionuclides and chelates or 
by co-administration of lysine or arginine [86,87,89]. 

Radiolabeling of tumor targeting peptides affords a proficient way 
of imaging in vivo using technologies such as single photon emission 
computed tomography (SPECT) and positron emission tomography 
(PET). SPECT was one of the first imaging modalities used clinically 
and is today widely employed in cancer imaging. Both 99mTc [90] (6 h 
half-life) and 111In (2.8 day half-life) are frequently used in SPECT [91]. 
PET is an emerging imaging technique that offers certain advantages 
compared to SPECT in regard to sensitivity as well as quantitation 
[92]. The β+-emitting tracer fluorine-18 2-deoxy-2-fluoro-D-glucose 
(18F-FDG) is a commonly used PET tracer for imaging processes with 
increased glucose metabolism [93]. However, the uptake of 18F-FDG is 
not increased in all cells and has not shown great promise in early stage 
ovarian cancer diagnosis [94]. Therefore, alternative PET tracers are 
being developed that target antigens on cancer cells [92,95]. Octreotide 
is an eight amino acid cyclized peptide that has been successfully 
developed for imaging of somatostatin receptor positive tumors in 
humans when labeled with 111In- diethylenetriaminepentaacetic acid 
(DTPA) [96]. The a-Melanocyte Stimulating Hocmone (α-MSH) analog 
has been conjugated with the chelator 1,4,7,10-tetraazacyclodecane-
1,4,7,10-tetraacetic acid (DOTA) and labeled with 64Cu, 86Y and 
68Ga for PET imaging of melanoma [97,98]. Our laboratory has 
identified peptides that bind ovarian, breast, and prostate tumors 
[59,63,64,73,99,100]. The phage display selected peptide KCCYSL 
against ErbB-2 has been radiolabeled with 111In and used for SPECT/
CT imaging of human MDA-MB-435 breast and OV-CAR-3 and SK-
OV-3 ovarian xenografted tumors (Figure 2) [58,59,73,99].

Whereas many cancer therapeutic agents function by binding and 
inhibiting receptors or other molecules involved in the progression 
of cancer, radiolabeling of peptides provides a method to target and 
eradicate cancer cells independent of peptide function and intracellular 
signaling pathways. Labeling peptides with β-particle emitting 
radioisotopes are being used for targeted tumor radiotherapy and offer 
advantages in regard to varying degrees of energy emission. High-
energy β-emitters such as 90Y (2.7 day half-life) are appropriate for the 
treatment of large tumor burdens, whereas medium and lower-energy 
β-emitters, such as 177Lu (6.7 day half-life) may be more suitable for 
treating smaller tumors, residual tumor or metastatic deposits found in 
ovarian cancer [101,102]. One example of a radiolabeled peptide being 
developed for tumor therapy is the α-MSH peptide analog, CCMSH, 

which targets melanoma cells. The α-MSH analog has been conjugated 
with the chelator DOTA and labeled with 212Pb and used for melanoma 
therapy studies in mice. The treatment showed significantly increased 
survival rates in which 45% of the mice receiving the highest dose of 
radiation survived the study disease-free [78,79].

These results demonstrate that radiolabeled peptides offer great 
promise as both cancer imaging and therapeutic agents. Peptides 
that target early stage ovarian cancer cells could be developed into 
diagnostic imaging/therapeutic agents. Furthermore, peptides may be 
developed that target tumor subpopulations such as ovarian CSC. 

Identification of Antigens Targeted by Selected Phage 
Displayed Peptides

Both phage and peptides can be used in formats that allow 
identification of targeted antigens. Previous studies have employed 
cross-linking of phage or selected peptides to antigens as a means to 
identify peptide targets [103,104]. Kelly et al. have employed photolinker 
and biotin labeled phage to bind and capture target antigens on the cell 
surface. After binding and cross-linking, cell lysates were incubated 
with streptavidin beads. Antigens were eluted by reversing the cross-
link and subsequently used for SDS-PAGE followed by tryptic digest 
and mass spectrometry analysis [104]. However, these techniques can 
suffer from lack of specificity due to the use of multiple cross-linkers 
and the large size of filamentous phage. In addition, phage are known 
to aggregate and exhibit high non-specific binding to cells, which 
may result in identification of numerous irrelevant proteins via mass 
spectrometry. 

Alternatively, uniquely designed immobilized fusion proteins may 
offer a powerful means of isolating specific targets of phage display 
selected peptide sequences. For example a recombinant fusion protein 
containing a phage display selected peptide can be developed to aid 
the antigen capture process. Such a fusion protein may contain an 
N-terminal protein, such as thioredoxin, which acts as a soluble fusion 
partner linked to a matrix specific binder and a series of protease 
cleavage sites. Our laboratory has adapted a thioredoxin fusion protein 
that remains soluble in E. coli cytosol and can be purified, during 
immobilization on S-protein sepharose (Figure 3). Thioredoxin will 
be removed by cleavage with a protease, leaving the phage display 
peptide still bound to the S-protein sepharose. The immobilized 
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Figure 2: SPECT imaging of 111In-DOTA(GSG)-KCCYSL ErbB-2 targeting 
peptide in MDA-MB-435 breast and OV-CAR-3 ovarian tumor bearing SCID 
mice. MDA-MB-435 breast and OVCAR ovarian tumor xenografted SCID 
mice were injected in the tail vein with 11.1 MBq of 111In-DOTA(GSG)-KCCYSL 
peptide or 111In-DOTA)GSG)-KYLCSC scrambled peptide and imaged by 
microSPECT/CT one hour later.
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peptide complex will then be accessible for binding to its target protein. 
The phage display derived peptide and its target antigen may then 
be released from the S-protein sepharose by cleavage with a second 
protease. Once bound target proteins from cell lysates have been 
obtained they may be analyzed by 2D gel electrophoresis and identified 
by proteomic methodologies. 
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