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Introduction
Mesenchymal stem cells (MSCs) possess fibroblastic-like 

morphology, limited but long-term viability, self renewal capability and 
multilineage potential [1-5]. MSCs originate from fetus mesoderm layer 
and in the adult reside in a variety of tissue such as: bone marrow stem 
cells (BMSCs), dermal stem cells, hepatic stem cells, limbal stem cells, 
adipose derived stem cells and orofacial tissue (adult tooth pulp tissue, 
periodontal ligament and adult human dental pulp [6-8]; these findings 
indicate that also adult mammalian mucosa contains tissue derived-
stem cells, and that even these fibroblastic MSCs are more plastic than 
previously appreciated. Several authors could demonstrate by clonal 
analysis that human dermis-derived fibroblasts have multipotent 
differentiation potential [9]. Fibroblastic mesenchymal stem-cell-like 
(FmSCs) present a surface marker expression pattern similar to MSCs, 
examination of cell size and granularity, as shown by FACS analyses, 
indicates the homogeneity of the FmSCs population [10]. 

Oral gingiva which is often resected during general dental 
treatments and treated as biomedical waste, is an easily obtainable 
tissue, and cells can be isolated from patients with minimal discomfort 
[11]. Interestingly, clinical observations and experimental studies 
consistently indicate that wound healing in the oral mucosa has better 
outcomes than in the skin, although the healing process and sequence 
are similar. The oral mucosa is composed of a thin keratinocyte layer 
with underlying connective tissue, the mayor constituent of this tissue 
are Gingival fibroblasts (GFs), that are different from skin fibroblasts 
[12]. These cells adhere and spread well on culture plates, and proliferate 
without requiring specific culture conditions.

HHT is an autosomal dominant disease characterized by diffuse 
visceral and muco-cutaneous telangiectases; a person with HHT has 
a tendency to form blood vessels that lack the capillaries between 
an artery and a vein; a typical HHT patient has epistaxis, muco-
cutaneous telangiectases and gastrointestinal bleeding in later life, 
even though this is only one of the possible scenarios associated with 
HHT disease [13-14]. This disease is caused either by mutations in 
endoglin on chromosome 9 (ENG; HHT1) or those of ACVRL1/ALK1 
on chromosome 12 (HHT2), respectively [15]. The prevalence of this 
disease is on average between 10-20/100000, although it is higher in 
some regions [16-18]. Juvenile polyposis/hereditary hemorrhagic 
telangiectasia syndrome is caused by mutations in the gene SMAD4 
(HHTJP) on chromosome 18; further genes are predicted at loci 
identified by linkage analyses on chromosomes 5 (HHT3) and 7 
(HHT4) [19]. All these genes encode for proteins that are found in the 
lining of the blood vessels.

We isolated human gingival fibroblasts from biopsies of people 
suffering from Hereditary Hemorrhagic Telangiectasia (HHT) and 
from healthy controls. 

The objective of this study was to evaluate the mesenchymal 
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Abstract
In the last few years’ stem cell research contributed to gain a fundamental understanding of how organisms 

grow and develop and how tissues are maintained throughout adult life. Mesenchymal stem cells (MSC) are self-
renewing, multipotent cells that are present in many adult tissues, such as bone marrow, adipose tissue, trabecular 
bone and muscle. More recently they have been found also in skin, liver and other tissues. Dermal skin-derived 
fibroblasts exhibit mesenchymal surface antigen immunophenotype and differentiation capabilities versus the three 
main mesenchymal tissues (bone, fat and cartilage). 

Hereditary Hemorrhagic Telangiectasia affects 1 in 5000 people and leads to abnormal blood vessel formation 
in skin and mucous membranes. We isolated human dermal fibroblasts from patients with Hereditary Hemorrhagic 
Telangiectasia (HHT) and healthy controls. In order to evaluate future applications of these cells in tissue engineering 
we compared mesenchymal properties (self-renewal, differentiation potential) of human gingival fibroblasts 
isolated from healthy and HHT-affected subjects using a combination of phenotypic (flow cytometry), morphologic 
(senescence), and functional (in vitro differentiation, colony forming unit assay and proliferation assay) criteria. Our 
results suggest that HHT cells were ideal candidates for tissue engineering. 
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potential of fibroblasts derived from HHT patients in comparison 
to the ones from normal subjects for possible applications in tissue 
engineering.

Material and Methods
Cell isolation and collection

Biopsies of oral gingiva, from adult patients (6 HHT and 2 healthy 
controls), were taken during surgical operation after formal consent. To 
establish cell cultures, tissues were minced with a scalpel without any 
enzymatic digestion. Fragments were then plated in a 6 cm culture dish, 
in growth medium composed by DMEM (Dulbecco’s Modified Eagle’s 
medium) supplemented with 10% FCS (Fetal Calf Serum), 1% Hepes, 
1% Sodium Pyruvate, 1% Antibiotics (Penicilline/Streptomicine) and 
1% L-glutamine (all from EuroClone®). Cells were kept in culture in 
5% CO2 at 37°C for one week, then fragments were manually removed 
and cells were allowed to expand up to 80–90% confluence. 

Cell immunophenotyping

Around 1.5 x 105 cells were tripsinized to obtain a cell suspension, 
then incubated 20 minutes in the dark at room temperature with 10µl 
of fluorochrome-conjugated (FITC or PE) monoclonal antibody (BD 
Pharmingen and MACS). Cells have been analyzed for haematopoietic 
(CD34, CD45, CD68, CD14), mesenchymal (CD90, CD105 or 
endoglin, CD29, CD166), and endothelial surface makers (PECAM 
[CD31]). After incubation with the specific antibody, cells were washed 
and analysed with FACS Calibur instrument (Becton Dickinson; BD, 
Heidelberg, Germany).

Colony-forming unit assays (CFA) 

Cells of both origins (HHT and control) were plated at 1, 2 or 3 
cells/well in a 96 multiwell plate in growth medium, and cultured for 
14 days, without medium changing. At the end of the culture period, 
cells were stained with Wright’s staining and CFUs were quantified by 
counting colonies of >50 cells. 

xCELLigence RT-CES system (Roche TM)

The RT-CES system is a real time cell analyzer developed by Roche, 
it is composed by three parts: an electronic sensor analyzer, a device 
station, and a 96-well e-plate.The e-plate containing tissue culture well 
is a standard flat-bottom 96-well culture plate, but in the well bottom 
is incorporated an in circle-on-line sensor electrode arrays. The device 
station, which is connected with e-plates, is placed in the incubator and 
connected to the electronic sensor analyzer through electrical cables. 
The electronic impedance of sensors electrodes is mesured to allow 
monitoring of changes of cells on the electrodes, this mesure gives 
back a parameter called cell index. The Cell Index is calculated by the 
dedicated software as the difference between the mesure of impedance 
at T0 (media alone) and the one mesured at each time point. As stated 
by Roche CI is a dimensionless value that is correlated to cell number 
and/or viability [20-21]. Under the control of the RT-CES software, 
experiment data are measured automatically by the sensor analyzer. 
For this experiment, for each cell type (in dodecuplicate), we seeded 
5000 cells/cm2 (980 cells/well) in 180 μl of DMEM 10% FCS in E-Plate 
96. Cells proliferation was monitored for 1 week, with an impedance 
measurement every minute. This starting density is the optimal for 
human mesenchymal cells growth (and differentiation).

β- galactosidase staining for senescence

HHT cells at passage 31 (P31) and control cells at passage 27 (P27) 

were plated at density of 3500 cells/cm2 in growth medium (DMEM 
10% FCS); after 10 days of culture cells were fixed in 4% buffered 
paraformaldehyde. Cells were then stained with the staining solution 
(4.2 mM citric acid, 12.5 mM sodium-phosphate, 158 mM sodium 
chloride, 0.21 mM magnesium chloride, 2.21 mg/mL potassium 
ferrocyanide, 1.68 mg/mL potassium ferricyanide, 1 mg/mL X-Gal, 
pH 6.0) for 24 h at room temperature as reported by Dimri et al. 
β-galactosidase activity (blue cells) at pH 6 is present only in senescent 
cells and is not found in presenescent, quiescent or immortal cells. 
[22,23]

Detection of telomerase activity

TRAPEZE® Gel Based Telomerase Detection kit was used to detect 
and evaluate telomerase activity in HHT and in control cells. This 
assay is a highly sensitive in vitro assay system for detecting telomerase 
activity and is based on improved version of the original method 
described by KIM et al. [24,25]. The assay is a one-buffer, two-enzyme, 
system utilizing PCR to enhance the sensitivity of telomerase detection 
in small samples. Cells were lysed and extracted DNA underwent to 
PCR using specific primers for telomere sequences (provided in the 
TRAPEZE Kit). For visualization of PCR products we run 25 µl of each 
sample on a 12.5% non denaturing-PAGE in 0.5X TBE buffer. This kit 
also provide, as positive control, a lysate of the tumoral cell line HeLa, 
because tumoral cells present an high telomerase activity.

Differentiation in vitro

5×103 cells/cm2 were seeded in 6 well culture plates. Each culture 
plate was kept in growth medium until confluence, and then the 
medium was replaced with specific medium according to the conditions 
described below to induce osteogenic or adipogenic differentiation. 
Media were replaced once a week. 

For adipogenic differentiation cells were cultured for 3 weeks with 
differentiative medium composed by the proliferative medium (DMEM 
10% FCS) supplemented with: 0.1% insulin transferring selenium (ITS), 
0.5mM IBTX (3-Isobutyl-1-methylxanthine), 1 µM Dexamethasone 
and 0.2mM Indomethacin (all supplement from Sigma-Aldrich, Italy). 
The adipogenic differentiation for HHT and control cells was assessed 
using Oil Red O stain as an indicator of intracellular lipid accumulation 
[26]. 

For osteogenic differentiation cells were cultured for 3 and 4 
week with differentiative medium composed by DMEM 10% FCS 
supplemented with: 3.5mM β-Glycerophosphate and Ascorbic Acid 
used at a final concentrations of 50µg/ml (all from Sigma-Aldrich, 
Italy).

For quantification of matrix mineralization, controls and HHT 
cells were stained with alizarin Red-S as described previously [27]. 
After staining, bound dye was solubilized in 10 mM sodium phosphate 
(pH 7.0) containing 10% cetylpyridinium chloride and quantitated 
spectrophotometrically at 562  nm, using Nanodrop (Nanodrop™ 
Technologies, Wilmington, USA). This quantitation methods is 
comparable, in accuracy, with the quantitation of hydroxyapatite by 
binding assay [28].

Real-Time PCR (RT-PCR)

At the end of the culture period (3 weeks for adipogenic 
differentiations and 40 days for osteogenic differentiations) we 
analyzed the expression of human genes involved in adipogenic (ADPF, 
SREBF1, LEP and PPAR-γ) [29] and osteogenic (ALP, COL I, ON and 
IBSP) differentiation [30]. Total RNA was extracted using Pure Link 
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Micro-to-Midi Total RNA Purification System (INVITROGEN, USA). 
Retro transcription was performed using 500 ng of total RNA, using 
Bio-Rad iScript cDNA Synthesis Kit (Bio-Rad, USA). All our real-time 
quantitative RT-PCR were performed with Mini-Opticon® Real-Time 
PCR System (Bio-Rad, Hercules, CA, USA). 

Statistical analysis

Fluorescence activated cell sorting (FACS) analyses, PCR 
and differentiation assays were performed and analyzed in three 
independent experiments. Results are expressed as the mean and 
standard deviation. Differences between HHT and control cells were 
evaluated using t-test; statistical significance was established at p<0.05. 
Representative figures are given for stainings.

Results and Discussion

Gingival derived fibroblasts from HHT and control donors 
show similar immunophenotype to human bone marrow 
mesenchymal cells

FACS analysis revealed that HHT and control cells possess the 
same surface markers expression of mesenchymal stem cells. Cells 

show simultaneous expression of cell surface mesenchymal markers 
(>97% of cells were positive) as CD13, CD90, CD105 and CD166 with 
a concomitant absence of haematopoietic and endothelial markers 
CD45, CD31, CD117 and CD34 (<6% of cells were positive). This 
expression pattern represents a specific phenotype for cultured MSC. 

Examination of cell size and granularity, by FACS analysis, shows 
the homogeneity of the cells populations analyzed.

HHT gingival fibroblasts show higher colony forming 
capability than control cells

When plated at 1 cell/well HHT cells showed a colony forming 
efficiency of 97.4%, at 2 cells/well of 96.9% and of 96.3% when plated at 
3 cells/well. Control cells showed a colony forming efficiency of 73.4% 
at 1 cell/well, at 2 cells/well of 25.8% and 28.9% for 3 cells/well Figure 
1. Interestingly, we could detect a significantly higher colony forming 
capability in HHT cells suggesting a higher proliferation rate of HHT 
cells with respect to control cells. T. 

HHT gingival derived fibroblasts show higher proliferation 
rate than healthy patients’ derived cells

To test the possibility that HHT cells possess higher proliferation 
rate than control cells we used the xCELLigence system. The system 
permits the real time analysis of cell growth and attachment on the 
basis of mesurament of electronic impedance in each well of the plate. 
The impedance due to ionic strength of media alone is measured at 
the beginning of the experiment (T0); the presence of cells alters the 
impedance because the cells act as an insulator when they attach to the 
well’s bottom. From impedance measurements instrument gives back 
a Cell Index, which is a relative value indicating how many cells are 
present in each well. For these types of experiments each measure is 
done in sample and control cells, thus providing a relative measure and 
avoiding a standard curve experiment.

Figure 1: Bar chart of colony forming assay: pink 1 cell/well control cells, 
pink/grey 1 cell/well HHT cells, red 2 cells/well control cells, red/grey 2 cells/
well HHT cells, light blue 3 cells/well control cells and blue 3 cells/well HHT 
cells. P<0.01.

Figure 2: xCELLigence: growth comparison graph between ctrl (mean of 
two clones, blue line) and HHT cells (means of six clones, pink line), after 1 
week of culture. P<0.01.

Figure 3: β-gal staining of HHT cells (A) and control cells (B). Red arrows 
indicate beta-galactosidase (senescent) positive cells. 

Figure 4: Telomerase activity on 12.5% PAGE gel: HHT1-4 refers to HHT 
clones from 4 patients. Only one for each patient is reported but at least 
three clones from each patient has been analyzed. C+ is the positive control 
(tumoral cells), ctrl refers to the control cells and C- is the negative control 
(water). Bar scale = 15µm.
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Figure 2 shows the growth curves of HHTs clones and controls 
ones in a time period of 1 week. Curves are plotted as average of the 
CIs measured at each time point in 12 different wells. HHT derived 
cells, exhibit a proliferation rate higher than those derived from healthy 
controls.

Control cells show higher senescence than HHT cells 

Senescence is the phenomenon by which normal diploid cells 
lose their ability to divide. To identify senescent cells we performed 
the β-galactosidase staining for senescence. β-galactosidase associated 
senescence is microscopically revealed by the presence of a blue, 
insoluble precipitate within the senescent cell after staining with 
x-gal. Control cells at passage 27 show a typical blue staining and also 
an enlarged morphology, Figure 3 B while HHT cells do not appear 
stained even after 31 passages Figure 3 A. 

HHT higher proliferation rate is not associated with tumoral 
phenotype

To verify if the higher proliferation rate of HHT cells could be 
associated with a tumoral phenotype we compared telomerase activity 
of HHT and control cells using the TRAPeze Telomerase Detection 
Kit. No PCR amplified products should be visible in the inactivated 
samples (heat treated), except the 36 bp internal standard control band, 
while a ladder of PCR products of different weight should be visible in 
telomerase positive samples (Figure 4). HHT cells show low telomerase 
activity if compared to positive control cells (HeLa tumoral cell line) 
and an analogous telomerase activity if compared with cells derived 
from healthy persons.

HHT cells show higher adipogenic and osteogenic 
differentiation capabilities than wt cells 

Adipogenic differentiations: To determine if HHT and control 
cells possess mesenchymal differentiation potential, we cultured them 
under appropriate conditions using inductive media as described in 
Materials and Methods. 

In HHT cells, fat vesicles could be detected after 3 weeks of culture 
under inducing conditions Figure 5 C,D. Control cells in the same culture 
conditions showed no lipidic droplets accumulations Figure 5 A, B. Figure 6: Real time PCR analysis of relative expression of the indicated 

genes after 3 week in adipogenic medium: A) ADPF and SBREF1, B) 
PPAR-γ, C) LEP (arbitrary units). Gene expressions were normalized to PGK 
(Phosphoglycerate kinase) gene expression. Each sample was analyzed in 
triplicate, all the p-values were <0,001.

Figure 5: Oil Red staining after 3 week of colture in inductive medium: A e 
B) control cells, without fat vesicles C e D) HHT cells with fat vesicles (red 
droplets). Bar scale = 15µm. 

Gene expression evaluation by Real time PCR of the genes 
involved in adipogenic differentiation (ADPF, SREBF1, LEP and 
PPAR-γ), is reported in Figure 6. qPCR results confirm that HHT cells 
differentiate along the adipogenic lineage after 3 weeks of culture in 
adipogenic medium, while control cells show expression pattern of 
undifferentiated cells. In fact there is an up-regulation of ADPF and 
PPARG-γ genes, key factors of adipogenic differentiation; also the 
expressions of SREBF1 that is involved in sterols synthesis, and leptin 
that is secreted by white adipocytes are upregulated respect to control. 

Osteogenic differentiation: Osteogenic differentiation was 
analyzed after 21 and 40 days of culture with osteogenic differentiation 
media (see material and methods). Alizarin Red staining was used to 
assess calcium deposition: HHT cells showed a marked staining Figure 
7 B respect to the control ones Figure 7 A. Solubilization of bound dye 
with cetylpyridinium confirmed that HHT cells differentiated better, 
with the deposition of a greater amount of hydroxyapatite, as shown 
in Figure 7 C.
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Morphological results were confirmed By Real time PCR analysis 
of osteogenic markers gene expression (ALP, IBSP, COL I and ON), 
Figure 8. After 40 days of culture in osteogenic medium HHT cells 
show an increase in the expression of all of the genes tested while 
control cells still have the expression pattern of undifferentiated cells. 
In particular there is a statistically significant up regulation of genes 
involved in active bone deposition (ALP) and in matrix mineralization 
(IBSP), and an over expression of collagen type I and osteocalcin, that 
are involved in late osteogenesis.

Discussion
One of the main problems of tissue engineering is the small number 

of cells and the excessive length of time required to regenerate tissue. 
For these reasons, researcher try to amplify the number of cells, find 
new sources of stem cells and reduce the differentiation period needed. 

Stem cell therapy in HHT patients has not yet been attempted, 
moreover there is a paucity of information on HHT bone marrow 
mesenchymal stem cells due to the difficulty of obtaining them from 
already severely compromised people.

Therefore with this work we evaluated the mesenchymal potential 
of skin fibroblasts obtained from patients suffering from hereditary 
hemorrhagic telangiectasia (HHT) comparing them with those derived 
from not affected patients for further applications in tissue engineering. 

As first step of the characterization we performed FACS analyses 
that revealed that HHT and control cells possess the same surface 

markers expression of mesenchymal stem cells. Given this fact we 
performed a set of experiments trying to assess if there were differences 
in their “mesenchymal” properties. Firstly we tested their self-renewal 
potential and the clone forming capability. Interestingly HHT clones 
showed, respect to the control ones, a higher clonal capability Figure 
1 and also a major self-renewal potential as shown by the senescence 
test Figure 3. Moreover their rate of growth turned out to be higher 
than the one of control cells as assessed in 1 week experiments 
performed with the xCELLigence system by Roche Figure 2. Analysis 
of telomerase activity showed that HHT cells possess low telomerase 
activity if compared to positive control cells (HeLa tumoral cells) and 
an analogous telomerase activity if compared with cells derived from 
healthy persons. 

Lastly we determined if HHT and control cells possessed 
mesenchymal differentiation potential, culturing them under 

Figure 7: Osteogenic differentiation: Alizarin Red staining A) control cells 
B) HHT cells. Red precipitates accumulate in correspondence to calcium 
deposits produced by the cells. Bar scale = 15µm.

Figure 8: Cetylpyridinium solubilization: comparison of hydroxyapatite levels 
after cetylpyridinium solubilization in HHT (pink) and control cells (blue), P 
<0.001.

Figure 9: Real time PCR analysis of relative expression of the indicated 
genes after 40 days in osteogenic medium; a) ALP, b) IBSP, c) COL I 
and ON (arbitrary units). Gene expressions were normalized to PGK 
(Phosphoglycerate kinase) gene expression. Each sample was analyzed in 
triplicate, all the p-values were <0.001.
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appropriate conditions using adipogenic and osteogenic inductive 
media. Once again the response of the clones derived from HHT 
patients is stronger in both cases. When cultured in adipogenic medium 
the HHT cells up regulate the expression of all the genes tested along 
the adipogenic pathway Figure 6. Results of gene expression analysis 
were confirmed by Oil Red staining. Control cells, after 3 weeks in 
adipogenic medium, showed no lipidic droplets accumulations Figure 
5 A, B, while in HHT cells, fat vesicles could be detected in the same 
culture conditions Figure 5 C, D. Data obtained from molecular 
biology analysis demonstrate that HHT cells possess the property to 
differentiate along the osteogenic lineage after 40 days of culture in 
osteogenic medium, with an up regulation of ALP and IBSP Figure 8, 
genes involved in bone deposition and matrix mineralization; control 
cells show instead the molecular pattern of undifferentiated cells. 
Alizarin Red staining confirmed molecular biology results, in fact 
HHT cells depose a greater amount of hydroxyapatite Figure 7 A B 
C. Using a combination of phenotypic (flow cytometry), morphologic 
(senescence), and functional (colony forming unit assay, proliferation 
assay and differentiation) criteria, this work could demonstrate that 
HHT cells fulfils the main characteristics of MSCs [31]. These cells 
express homogenously all MSC-related surface antigens whereas the 
expression of CD-proteins typical for hematopoietic cells remained 
undetectable, they differentiate along the adipogenic and osteogenic 
cell lineages, furthermore they are highly clonogenic (colony forming 
efficiency about 97%), show a high proliferation potential, and an 
enhanced capacity of self renewal along with a major stability within 
passages even when cryopreserved or sub cultured. 

HHT cells can be isolated easily, their expansion in culture is very 
convenient (in vitro expansion without growth factor), thus making 
them ideal candidates for tissue engineering. HHT cells also represent a 
dynamic system suitable to the identification of new molecular targets 
and the development of novel drugs, which can be tested in vitro for 
safety or to predict or anticipate potential toxicity in humans.
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ADPF For: 5’ AGCCCCTTACAGGCATAGGT 3’
Rev: 5’ GTGAGATGGCAGAGAACGGT 3’ 121 bp 60°C

LEP For: 5’ GTAGGAATCGCAGCGCC 3’
Rev: 3’ GGGCACACGTTGGACATAGA 3’ 125 bp 60°C

PPAR-γ For: 5’ CCAGAAAGCCATTCCTTCAC 3’
Rev: 3’ CGGAGCTGATCCCAAAGTT 3’ 109 bp 60°C

SREBF1 For: 5’CAAATAGGCCAGGGAAGTCA 3’
Rev: 5’ACGAGCCACCCTTCAGC 3’ 138 bp 60°C

ALP For: 5’ CTA TCC TGG CTC CGT GTC C 3’
Rev: 5’ AGC CCA GAG ATG CAA TCG 3’ 138 bp 60°C

COL I For: 5’ CAT GTT CAG CTT TGT GGA CC 3’
Rev: 5’ TTC TGT ACG CAG GTG ATT GG 3’ 107 bp 60°C

IBSP For: 5’ GGG CAG TAG TGA CTC ATC CG 3’
Rev: 5’ TCA GCC TCA GAG TCT TCA TCT TC 3’ 90 bp 60°C

ON For: 5’ GAGAAAGAAGATCCAGGCCC 3’
Rev: 5’ GCCTGTCTCAAACCCCTCC 3’ 126 bp 60°C

Table 1: Primers list. List of the primers used in real-time quantitative RT-PCR.
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