ISSN: 2476-2261 Open Access

PDX Models: Cornerstone of Precision Cancer Treatment

Gabriela Torres*

Department of Precision Oncology, Instituto Nacional de Ciencias Clínicas, Mexico City, Mexico

Introduction

Patient-derived xenograft (PDX) models are quickly becoming a cornerstone in precision medicine. They are incredibly useful for capturing the genetic and phenotypic diversity of human tumors, making them invaluable for preclinical drug screening, identifying biomarkers, and tailoring treatments to individual patients. The model's ability to closely mimic human tumor biology helps bridge the gap between bench research and clinical application[1].

Focusing on specific cancer types, PDX models prove essential. In lung cancer, for example, these models contribute significantly to understanding its biology, evaluating novel therapeutic agents, and developing personalized treatment strategies. This is especially important given the challenges of drug resistance and tumor heterogeneity common in this cancer type[2].

The application of PDX models extends to melanoma research, where they offer an updated overview of how these models are established and used. Their current applications include preclinical drug testing and biomarker discovery for melanoma. They also address the benefits and limitations of using PDXs to advance our understanding and treatment of this aggressive skin cancer[3].

For breast cancer research, PDX models present significant opportunities. Researchers use them for studying tumor heterogeneity, identifying novel therapeutic targets, and predicting treatment response. While these models are invaluable, establishing and maintaining such complex models for breast cancer does come with inherent challenges[4].

The potential of patient-derived xenografts is also being explored in gynecologic cancers. Here, they are seen as a promising tool for developing targeted therapies and advancing precision medicine. PDXs can effectively model various gynecological malignancies, assisting in the discovery of new drugs and the optimization of treatment protocols for these complex cancers[5].

Overall, patient-derived xenograft models provide a crucial overview, detailing their establishment methods and clinical applications. They serve as essential preclinical platforms for evaluating anti-cancer therapies and understanding tumor progression. Ultimately, PDXs are contributing to more personalized and effective cancer treatments[6].

In renal cell carcinoma (RCC), patient-derived xenografts from RCC patients are specifically employed. These models help investigate disease mechanisms, test new therapeutic agents, and develop more effective treatment strategies. This is particularly vital for RCC, a disease known for its significant heterogeneity and resistance to conventional therapies[7].

The broad application of patient-derived xenografts in precision oncology is a key

area of focus. These models are highly relevant because they maintain the genetic and histological characteristics of the original patient tumor. This makes them an ideal platform for preclinical drug testing, biomarker identification, and guiding individualized treatment decisions across various cancers[8].

Recent advances in patient-derived xenograft (PDX) models for cancer research are continually being discussed. Improvements include higher engraftment success rates, the expansion of PDX libraries to cover diverse cancer types, and their evolving role in drug discovery, understanding resistance mechanisms, and developing personalized treatment approaches[9].

Finally, the role of patient-derived xenografts in drug development for gastrointestinal cancers is significant. PDX models are a powerful tool for replicating the complex biology of GI tumors. This enables the identification of effective therapeutic agents and the development of tailored treatment strategies for conditions like colorectal, gastric, and pancreatic cancers[10].

Description

Patient-derived xenograft (PDX) models represent a cornerstone in precision medicine, offering invaluable tools for preclinical drug screening, identifying biomarkers, and tailoring treatments to individual patients[1]. These models are crucial preclinical platforms, detailing their establishment methods and clinical applications, ultimately contributing to more personalized and effective cancer treatments[6]. What this really means is that by maintaining the genetic and histological characteristics of the original patient tumor, PDX models provide a highly relevant platform for preclinical drug testing, biomarker identification, and guiding individualized treatment decisions for various cancers[8].

Recent advances in PDX models have improved engraftment success rates and expanded PDX libraries across different cancer types, highlighting their evolving role in drug discovery, understanding resistance mechanisms, and personalized treatment approaches[9]. The model's ability to closely mimic human tumor biology helps bridge the gap between bench research and clinical application, effectively capturing the genetic and phenotypic diversity of human tumors[1]. These models serve as crucial tools for understanding tumor progression and evaluating anti-cancer therapies[6].

Let's break it down by specific cancer types. In lung cancer, PDXs contribute to understanding tumor biology, evaluating novel therapeutic agents, and developing personalized treatment strategies, especially considering drug resistance and tumor heterogeneity[2]. For melanoma research, PDX models offer an updated overview of establishment and current applications in preclinical drug testing and biomarker discovery, advancing our understanding and treatment of this aggres-

sive skin cancer[3]. Similarly, in breast cancer research, PDX models present significant opportunities for studying tumor heterogeneity, identifying novel therapeutic targets, and predicting treatment response, even while acknowledging inherent challenges[4].

The utility of PDX models extends to gynecologic cancers, positioning them as a promising tool for developing targeted therapies and advancing precision medicine. They effectively model various gynecological malignancies, aiding in new drug discovery and optimizing treatment protocols[5]. For renal cell carcinoma (RCC), PDX models investigate disease mechanisms, test new therapeutic agents, and develop more effective strategies for a disease known for its heterogeneity and resistance to conventional therapies[7]. What this really means is that patient-derived xenografts also play a powerful role in drug development for gastrointestinal cancers, replicating complex GI tumor biology to identify effective therapeutic agents for conditions like colorectal, gastric, and pancreatic cancers[10].

Across various cancer types, from general oncology to specific solid tumors, PDX models provide an indispensable preclinical platform. They are critical for translating research findings into clinical applications, ultimately moving us closer to truly individualized patient care.

Conclusion

Patient-derived xenograft (PDX) models are becoming a cornerstone in precision medicine. They are invaluable for preclinical drug screening, identifying biomarkers, and tailoring treatments to individual patients, as they capture the genetic and phenotypic diversity of human tumors. The model's ability to closely mimic human tumor biology helps bridge the gap between bench research and clinical application. PDXs serve as crucial preclinical platforms for evaluating anti-cancer therapies, understanding tumor progression, and ultimately contributing to more personalized and effective cancer treatments. By maintaining the genetic and histological characteristics of the original patient tumor, PDX models provide a highly relevant platform for preclinical drug testing, biomarker identification, and guiding individualized treatment decisions for various cancers. Recent advances include improvements in engraftment success rates, expansion of PDX libraries across different cancer types, and their evolving role in drug discovery and understanding resistance mechanisms. For instance, PDXs contribute to understanding lung cancer biology, evaluating novel therapeutic agents, and developing personalized strategies, especially considering drug resistance and tumor heterogeneity. These models are established for melanoma research, used in preclinical drug testing and biomarker discovery, advancing understanding and treatment of this aggressive skin cancer. PDX models also offer significant opportunities for studying tumor heterogeneity, identifying novel therapeutic targets, and predicting treatment response in breast cancer, despite inherent challenges. Their potential extends to gynecologic cancers, where they are a promising tool for developing targeted therapies and optimizing treatment protocols. PDX models for gastrointestinal cancers replicate complex GI tumor biology, aiding in identifying effective therapeutic

agents for conditions like colorectal, gastric, and pancreatic cancers.

Acknowledgement

None.

Conflict of Interest

None.

References

- Chang Dong, Hong-Yan Zong, Hao Li. "Patient-derived xenograft models: A valuable tool for precision medicine." Cancer Lett. 588 (2024):216719.
- Yu Tang, Yan-Fei Wang, Pei-Feng Hu. "Patient-derived xenograft models in lung cancer." Front Immunol. 14 (2023):1229712.
- Xiang He, Ze Wang, Han Lin. "Patient-derived xenograft models for melanoma: an update." Cancer Cell Int. 23 (2023):155.
- Bence Fekete, Balázs Tóth, Attila Bakos. "Patient-derived xenografts for breast cancer research: challenges and opportunities." Breast Cancer. 30 (2023):15-23.
- Qing Geng, Zhaorui Song, Dan Wang. "Patient-derived xenografts in gynecologic cancers: A promising tool for targeted therapy and precision medicine." Front Oncol. 12 (2022):930600.
- Tao Zhang, Ying Cao, Hongxuan Han. "Patient-derived xenograft models: an overview of their establishment and clinical application." Discov Oncol. 13 (2022):37.
- Jianxiong Yang, Hong Yu, Gang Wang. "Patient-derived xenografts of renal cell carcinoma." Transl Cancer Res. 10 (2021):5033-5041.
- Haihong Zhang, Dongsheng Li, Yanjie Chen. "Patient-derived xenografts and their application in precision oncology." Mol Biol Rep. 49 (2022):775-783.
- Hongyang Gao, Xiaoguang Yang, Ruibin Li. "Recent advances in patient-derived xenograft (PDX) models for cancer research." Exp Cell Res. 401 (2021):112521.
- Wei Jiang, Wen-Dong Guo, Jun Xu. "Patient-derived xenografts for drug development in gastrointestinal cancers." World J Gastroenterol. 27 (2021):287-300.

How to cite this article: Torres, Gabriela. "PDX Models: Cornerstone of Precision Cancer Treatment." J Oncol Transl Res 11 (2025):324.

*Address for Correspondence: Gabriela, Torres, Department of Precision Oncology, Instituto Nacional de Ciencias Clínicas, Mexico City, Mexico, E-mail: g.torres@inccl.mx

Copyright: © 2025 Torres G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Nov-2025, Manuscript No. jotr-25-175611; Editor assigned: 04-Nov-2025, PreQC No. P-175611; Reviewed: 18-Nov-2025, QC No. Q-175611; Revised: 24-Nov-2025, Manuscript No. R-175611; Published: 29-Nov-2025, DOI: 10.37421/2476-2261. 2025.11.324