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PBK is a Mitotic Kinase Expressed in Rapidly Prolifer-
ating Cells 

A serine/threonine kinase PDZ binding-kinase (PBK) is a 
member of the mitogen-activated protein kinase (MAPK) kinase 
(MAPKK) family [1-3]. This enzyme is also known under the name 
T-lymphokine-activated killer cell-originated protein kinase (TOPK).
PBK was discovered as a factor that binds PDZ2 domain of hDLg
(human homologue of the Drosophila Discs-large (Dlg) tumor
suppressor protein) [2]. This study also demonstrated that the mitotic
phosphorylation of PBK is required for its kinase activity [2]. Due to this 
specific activation during the mitotic-phase of the cell cycle, PBK is also 
denoted as a “mitotic kinase”. PBK protein is phosphorylated by cdk1/
cyclin B during mitosis and its presence is necessary for formation of the 
mid-zone of the mitotic spindle [3]. The PBK gene is especially highly
expressed in placenta [2] and was also implicated in spermatogenesis
[4,5]. Since PBK is expressed in seminiferous tubules of testis, where
the male gametes are produced, it has been speculated that PBK might
be essential in spermatocytogenesis during which mitosis occurs [4].
While PBK is not expressed in the adult human brain [2] its mRNA is
abundant in the human fetal brain [4] and rapidly dividing neuronal
stem/progenitor cells (NS/PCs) [6]. In mouse NS/PCs both Pbk and its
downstream target p38 are essential for proliferation and self-renewal
[6]. In the adult mouse brain, Pbk is expressed in rapidly proliferating
NS/PCs of the adult subventricular zone and early postnatal cerebellar
external granular layer [6]. The notion that PBK represents a stemness-
associated kinase is further supported by the evidence that PBK is down 
regulated during differentiation [6,7]. PBK is specifically expressed in
all germinal zones during brain development and is not expressed in
mature neurons and glial cells [6]. A study conducted in HL-60 myeloid 
leukemia cells, induced to differentiate, using phorbol ester, showed that 
PBK protein expression was strongly down-regulated in differentiated
cells [7]. This study also showed that the expression of PBK correlated
positively with the expression of a cell cycle regulator c-Myc.

The Implication of PBK in Human Malignancies
PBK expression was originally linked to hematologic tumors 

such as leukemia, lymphoma and myeloma where its up-regulation 
correlates with the malignant potential of these tumors [1,7-10]. A 
vast body of evidence links this enzyme also to solid tumors such as 
glioblastoma [11,12], melanoma [13], neuroblastoma [14], colorectal 
carcinomas [15-17], cholangiocarcinomas [10], renal cell carcinomas 
[18] and cancers of prostate [19,20], breast [21-24], cervix [25], lung
[26-28] and urinary bladder [29].

PBK is associated with very poor prognosis in hematologic 
malignancies such as acute myeloid leukemia [9]. Also in many solid 
tumors, increased levels of PBK correlates with shorter patient survival. 
A survival analysis in patients with prostate cancer identified PBK as 
an independent factor for predicting recurrence-free survival [19]. In 
colorectal cancer PBK levels strongly correlated with poor overall and 
disease-free survival of patients [30]. A combination of high PBK and 
Interleukin-8 (also known as CXCL8) had the worst prognosis [30]. In 

lung cancer patients, increased PBK protein expression was associated 
with poor prognosis and could serve as an independent prognostic 
factor [27,28,31]. In human urinary bladder, transitional cell carcinoma 
expression levels of PBK were found to be significantly associated with 
the stage of the disease [29]. Interestingly in cholangiocarcinoma 
expression levels of PBK correlated positively with patient survival [10]. 

In glioblastoma, PBK was highly up-regulated both at mRNA 
and protein levels [11]. Furthermore PBK was up-regulated in GBM 
when compared to both normal NS/PCs from the adult human brain 
and the low grade gliomas [11,32]. PBK could serve as a patient 
survival prediction marker both alone [12] and as a part of a 9-gene 
signature [11]. PBK and eight other genes: CENPA, KIF15, DEPDC1, 
CDC6, DLG7, KIF18A, EZH2 and HMMR were highly co-expressed 
in glioblastoma tumours and were part of the same protein-protein 
interaction network [11]. The Cancer Genome Atlas (TCGA) recently 
classified all GBM tumors into four categories according to their gene 
expression profiles [33]. These were: mesenchymal, classical, proneural 
and neural tumours [33]. PBK was found particularly up-regulated in 
the proneural GBM samples [11,12]. However, gene expression of PBK 
and the 9-gene signature correlated with survival of mesenchymal GBM 
patients [11,12].

PBK is Expressed in Glioblastoma Cancer Stem Cells
PBK is implicated in regulation of stemness during brain 

development [6]. Several studies also implicate PBK in regulation of 
stemness properties in cancer stem cells (CSCs) [7,11,12]. Populations 
of cancer cells with stem-like properties were originally identified in 
hematological malignancies but their presence was also confirmed 
in many solid tumors [34-37]. New cancer treatments that involve 
eradication of cancer stem cells (CSCs) typically comprise either 
inhibitor-mediated targeting of known biochemical signaling pathways 
or immune therapy [38-40]. 

Glioblastoma is the most common primary brain malignancy and 
one of the deadliest human cancers with median patient survival time 
of less than 15 months [41]. In spite of combined surgery, radiation and 
chemotherapy the prognosis remains dismal. It has been suggested that 
the GBM cells with cancer stem-like properties contained within these 
tumours, infiltrate the surrounding brain tissue and cause recurrence 
[42]. Glioblastoma stem cells are typically resistant to radiation [43] 
and chemotherapy [44] and remain predominantly unaffected by 
the adjuvant treatment that targets the bulk tumor. Assuming that 
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glioblastoma stem cells play a central role in GBM recurrence [42,45,46], 
novel targeting therapies must therefore include eradication of these 
cells. Glioblastoma primary cells can be grown as spheres in serum free 
and mitogen containing medium in order to promote stemness and 
enrich for CSCs [47,48]. PBK is highly up-regulated in GBM CSCs both 
at the mRNA and protein levels [11,12]. 

Mechanisms of PBK Action 
Recent interest in PBK revealed its involvement in numerous 

biochemical-signaling pathways. PBK and several key-players in cancer 
signaling pathways such as growth receptors and cell-cycle regulators 
were part of the same protein-protein interaction network [11]. 

A study performed in human malignant melanoma cells identified 
PBK as an upstream activator of JNKs in response to UVB irradiation 
[49]. This study showed that PBK could phosphorylate UVB-induced 
c-Jun-NH2-kinase 1 (JNK1) thus increasing JNK’s capability to 
mediate H-Ras–induced cell transformation [49]. A study in prostate 
cancer identified PBK as a direct target for E2F1 [19]. Furthermore 
the PBK gene represents a likely candidate for an IL-6 target gene. This 
is suggested by its significant up-regulated expression in hybridoma 
cells induced to grow by a brief IL-6 pulse [50]. PBK is also identified 
as a molecular target of doxorubicin and mediates doxorubicin 
chemoresistance in cervical cancer cell [51]. PBK directly interacts with 
and phosphorylates IκBα at Ser-32, leading to p65 nuclear translocation 
and NF-κB activation [51]. The same study revealed that PBK-mediated 
IκBα phosphorylation was enhanced in response to doxorubicin [51]. 

It has been shown that the overexpression of PBK in normal lung 
fibroblasts enhanced the migration and invasion in a PI3K/AKT-
dependent manner [28]. PBK both promoted AKT phosphorylation at 
Ser (473) and decreased the phosphatase and tensin homolog (PTEN) 
levels in lung cancer cells. KD of PBK had opposite effects. A PI3K-
specific inhibitor could not abolish the negative effect of PBK on PTEN 
expression, while co-expression of PTEN significantly reduced PBK-
induced AKT phosphorylation in a dose-dependent manner. The PBK-
mediated decline in PTEN transcript levels was therefore suggested to 
act upstream from the PI3K/AKT-stimulated migration [28]. A study 
of colorectal cancer cells revealed the existence of a positive feedback 
loop between PBK and ERK2 that served as a promoter of tumorigenic 
properties in vitro and in vivo [17]. A study of breast cancer cells 
showed that PBK is needed for the activation of the p38 pathway by 
growth factors [21]. 

PBK’s actions through p38 and ERK signaling were also shown in 
glioblastoma stem-like cells [12]. Levels of phospho-p38 MAP kinase 
(Thr180/Tyr182) were down-regulated in GBM CSC cultures treated 
with HI-TOPK-031 and those featuring shRNA mediated knockdown 
of PBK [12]. Down-regulation of PBK also induced significant 
reduction in phosphorylated ERK1/2 levels [12] thus confirming the 
results obtained in other cancers [17,21,30].

PBK as a Potential Therapeutic Target in Cancers
There are many evidences suggesting that PBK might be a 

new promising therapeutic target. In malignancies such as acute 
myeloid leukemia KD of PBK significantly decreased proliferation of 
promyelocytes and induced apoptosis [9]. KD of PBK also induced 
cell cycle arrest in G2/M and induced mitochondrial dysfunction [9]. 
Similar effects were observed in lung adenocarcinoma where KD of 
PBK resulted in reduced proliferation and viability in cancer cell lines 
A549 and GLC82 [27]. KD of PBK in HeLa cells triggered doxorubicin-
mediated apoptosis that was associated with caspase-dependent 

signaling pathways [51]. In colorectal cancer cells, knockdown of 
PBK reduced tumorigenic properties of the cell line HCT116 in vitro 
and in vivo [17]. When the colorectal cancer cells were treated with 
epidermal growth factor, knockdown of PBK resulted in a decreased 
phosphorylation of ERK2 [17]. PBK/TOPK interacts with the DBD 
domain of tumor suppressor p53 and modulates expression of 
transcriptional targets including p21 [15]. 

Atorvastatin (Lipitor) or the geranylgeranyltransferase I inhibitor 
GGTI-298, is an inhibitor of hydroxymethylglutaryl co-enzyme A 
(HMG-CoA) reductase, a rate-limiting enzyme of the mevalonate 
pathway. A recent study showed that atorvastatin can down-regulate 
expression of PBK by impairing protein geranylgeranylation [22]. 
This study also showed that Yes-associated protein (YAP) mediates 
geranylgeranylation-regulated expression of PBK. 

In breast cancer cells PBK knockdown impaired p38 activation after 
long-term stimulation with different growth factors and reduced the 
cells’ motility [21]. However the suppression of PBK expression did 
not prevent progression through the cell cycle, but caused decreased 
proliferation over time in culture, and reduced stemness as shown by 
the clonogenic assay [21]. Suppressed PBK expression in breast cancer 
also resulted in an impaired response to DNA damage, increased DNA 
damage and decreased cell survival [21]. KD of PBK could suppress cell 
proliferation, invasion and migration of prostate cancer cell lines in vitro 
[19]. Interestingly, down-regulation of PBK in cholangiocarcinoma 
QBC 939 cells, did not affect their proliferation [10]. 

PBK-specific inhibitor HI-TOPK-032 was tested in colon cancer [16]. 
Its application reduced growth of colon cancer cells by decreasing ERK-
RSK phosphorylation as well as increasing apoptosis through regulation 
of p53, cleaved caspase-7 and cleaved PARP [16]. In vivo, administration 
of HI-TOPK-032 suppressed tumor growth in a colon cancer xenograft 
model. Although HI-TOPK-032 could efficiently inhibit the PBK kinase 
activity it had little effect on extracellular signal-regulated kinase 1 (ERK1), 
c-jun-NH2-kinase 1 or p38 kinase activation [16]. 

Gene knockdown (KD) of PBK in GBM GSC cultures resulted in 
reduced viability and sphere formation and occasionally also in increased 
apoptosis [12]. Signaling pathways such as Wnt, EGF and Notch were 
dysregulated in cultures featuring PBK KD [12]. Treatment of these 
cells with PBK inhibitor HITOPK-032 almost completely abolished 
growth and induced apoptosis in all tested cultures [12]. HI-TOPK-032 
treatment also resulted in diminished growth of experimentally induced 
subcutaneous GBM tumors in mice. Inhibition of PBK using HI-TOPK 
induced significant reduction in phosphorylated ERK1/2 and p38 MAP 
kinase levels [12]. The effect of this inhibitor seems thus to be even 
better than previously shown in colon cancer cells [16].

Researchers have recently identified a new compound, OTS964, 
that blocks PBK kinase activity with high affinity and selectivity [52]. 
This inhibitor causes a cytokinesis defect and the subsequent apoptosis 
of cancer cells in vitro as well as in xenograft models of human lung 
cancer [52]. Clinical trials of OTS964 may start in 2016 [53].

Summary: This review shows that PBK is involved in initiation 
and progression of numerous malignancies. Its impact as a predictor 
of patient survival in many cancers is undeniable. Down-regulation 
of PBK generally reduces tumorigenic features in breast and colon 
cancers, glioblastoma, melanoma and several other malignancies. 
The potential of PBK in targeted therapies is therefore paramount. 
However the availability of only a few inhibitors is a limiting factor at 
the moment. New specific inhibitors against this oncogenic-kinase are 
therefore dearly sought. 
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