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Introduction
Acute pancreatitis as an inflammatory condition with varied clinical 

presentations, ranging from a self limiting condition to life threatening 
necrotising pancreatitis [1,2]. Around 10-20% of individual die from 
multi-organ failure even after best supporting care and pharmacologic 
therapy. High mortality rate is attributed to lack of specific theurapeutic 
interventions [2,3]. Acute pancreatitis develops after a cascade of 
multiple pathways leading to activation of trypsinogen which in turn 
activates other digestive enzymes. There occurs a surge in the oxidative 
stress leading to generation of free radical from oxidation of lipid and 
proteins, which disrupts the pancreatic membrane [4-6].

Perez et al. have shown in rat models that, cell necrosis and 
hemolysis can cause activation of the inflammatory cascade and 
oxidative stress [7]. Beneficial effects of anti-oxidant therapy in form 
of superoxide dismutase and catalase in acute pancreatitis in past trials 
thereby provide an indirect proof of role of oxidative stress in the 
disease pathogenesis [8]. They also suggested allopurinol, an inhibitor 
of xanthine oxidase as a potential therapeutic agent [8]. Several studies 
on oxidative stress, xanthine oxidase and other pro and anti-oxidants 
have shown that oxidative stress is not only a mediator in the early local 
events but also associated in systemic inflammatory response in acute 
pancreatitis [9,10].

Reactive oxygen species (ROS) activates the inflammatory cascade 
thereby recruiting inflammatory cells and cause tissue damage. 
Expression of inflammatory cytokine which is regulated by many 
signaling molecules such as Nuclear Factor (NF-kB) and Activator 
Protein-1(ap-1), Signal Transducer and Activator of Transcription 
3 (STAT3), and Mitogen Activated Protein Kinases(MAPKs). ROS 
activates these various signaling molecules leading to activation of 
pro-inflammatory cytokines, which in turn amplifies the inflammatory 
cascade in acute pancreatitis [11]. Milnerowicz et al. have studied the 
degree of pro/antioxidative imbalance and have estimated the role of 
various antioxidants in maintenance of the balance of pro/antioxidants 
during acute pancreatitis. They have demonstrated that increase in IL-6 
concentration in serum is correlated with Ranson criteria, and increase 
in Glutathione Peroxidase activity(GPx), levels of Metallothionein-
1(MT-1), Thiobarbituric acid Reactive Substances(TBARS), or GGT, 
and NAG activities in patients groups compared with healthy subjects. 

They also noted a decrease in serum GSH levels in patients with 
acute pancreatitis suggesting oxidative stress. GPx/GSH(Glutathione 
Peroxidase/Reduced Glutathione) and MT-1 can be considered 
as agents of first line of defence against oxidative stress in acute 
pancreatitis [12].

Studies have shown significant consumption of antioxidant 
in patients with severe acute pancreatitis [13]. Oxidative stress, besides 
local effects also has metastatic effects on other organs such as lungs 
and it has been studied that the cytokine production and infiltration 
of inflammatory cells occur simultaneously both in lungs and pancreas 
during pancreatitis[14]. Antioxidant therapy and other ROS scavengers 
like Hydrogen rich saline, Emodin which is a component in Chinese 
herb, Diosmetin (3', 5, 7-trihydroxy-4'-methoxyflavone) the aglycone 
part of the flavonoid glycosides diosmin occuring naturally in citrus 
fruit may neutralize this imbalance of pro/antioxidant levels both in 
the pancreas as well as other organs and improve survival [15-17]. 
Kuliaviene et al. have demonstrated that the fatty acid composition of 
the erythrocyte membrane changes in acute pancreatitis which may be 
due to oxidative stress [18]. Necrosectomy done in severe necrotizing 
pancreatitis clears the lipid peroxidation products effectively leading to 
improved erythrocyte membrane fluidity and increased survival [19]. 

Oxidative Stress and Pathophysiology of Acute 
Pancreatitis

The exact pathogenesis of acute pancreatitis is still unclear 
despite extensive research worldwide [20]. The premature activation 
pancreatic zymogens particularly trypsinogen, leading to autodigestion 
of pancreatic tissue and subsequent development local and systemic 
inflammatory response is the most accepted theory till now [20]. Last 
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decade has witnessed a lot of studies on the role of oxidative stress in 
pathogenesis of acute pancreatitis. In both experimental and clinical 
studies, it has been seen that oxidative stress plays a central role in the 
pathogenesis of AP.

Oxygen free radical (OFR)/ Reactive oxygen species (ROS) 
and oxidative stress

All aerobic organisms require ground state oxygen to survive [21]. 
During the process of oxygen metabolism some amount of oxygen 
free radicals are generated which are required to maintain body 
homeostasis [22,23]. At physiologic levels, these oxygen free radicals 
help in regulation of transcription, act as signalling molecules or stage 
a defence mechanism against microorganisms [24]. Normally a balance 
is maintained between the oxygen free radicals and the scavengers. 
Accelerated production of oxygen free radicals can occur in acute 
inflammatory disorder like acute pancreatitis which can cause tissue 
and cell damage and accentuate the inflammatory response. 

Direct action of OFR includes lipid peroxidation in pancreatic 
membranes, oxidation of proteins and induction of DNA fragmentation 
[25]. OFR directly attacks the double bonds of unsaturated 
phospholipids leading to degradation of structural integrity of the 
cell membrane including both plasma membrane and membrane of 
intracellular organelles such as lysozomes and endoplasmic reticulum 
[26]. Accumulation of lipid degradation products, malonaldehyde 
(MDA) and 4-hydroxynonenol in the membranes cause increased 
permeability and deformability of the membranes [21]. As a 
consequence intracellular leakage of proteases and influx of Ca2+ occur, 
ultimately leading to tissue and cell damage [26]. Protein oxidation leads 
to fragmentation of polypeptide chains or cross linking of sulfhydryl 
groups resulting in impaired enzyme function [21]. OFR also cause 
abnormal cross linking and strand breaks in DNA [27]. DNA-damage 
response follows leading to the activation of p53 and poly-ADP ribose 
polymerase (PARP) a nuclear enzyme. Apoptosis and cell cycle arrest 
follows the activation of p53, whereas activation of PARP leads to cell 
necrosis [28]. 

Indirectly, OFR causes activation arachidonic acid cascade leading 
to increased production of thromboxanes and leukotriene B4 [21]. 
Thromboxanes because of their potent action on platelet aggregation 
and vasoconstricting effect, decrease microvascular tissue perfusion 
and enhance ischaemic injury [29]. On the other hand leukotriene-B4 
promotes activation of polymorphonuclear leukocytes and discharge 
of lysosomal enzymes [30]. Activated polymorphonuclear leukocytes 
are responsible for respiratory burst that leads to increased production 
of reactive oxygen species and activated enzymes which contributes to 
further cell damage [8] (Figure 1).

Recently the role of oxidative and nitrosative stress in modulation 
of intracellular signaling by redox unbalance have been described. 
Up-regulation of pro-inflammatory genes occurs as a result of redox 
unbalance through activation of different pathways which ultimately 
leads to increased production of proinflammatory cytokines [31] 
(Figure 1).

ROS and NF-kB activation: The regulation of NF-kB occurs 
through oxidation and thiolation of upstream protein kinases and 
phosphatases [32]. ROS dependant tyrosine phosphorylation helps in 
NF-kappa B activation [33]. This ROS dependent activation seems to 
occur in the early phase of acute pancreatitis. Activation of NF-kB leads 
to increased production of proinflammatory cytokines and subsequent 
amplification of inflammatory response [31].

Disulfide stress: Oxidation of thiols in protein during acute 
inflammations leads to disulfide stress and inactivation of protein 
phosphatases, such as serine protein phosphatise 2A and tyrosine 
phosphatase SHP1 [31]. This favours mitogen activated protein 
kinase (MAPK) activation and amplification of the inflammatory 
cascade. Other relevant redox-signaling thiols targets of disulfide stress 
include thioredoxin-1, peroxiredoxin, Keap-1, disulfide isomerase, 
and endonuclease APE1/Ref1 [34]. Inhibition of MKPs via different 
signalling pathways leads to activation of MAPKs by ROS. MKPs 
belong to a large group of protein tyrosine phosphatases, its catalytic 
cysteine is much more sensitive to reversible oxidation than other 
cysteines which makes it more vulnerable targets of ROS [35]. Thus 
ROS governs the balance between MAPKs and protein phosphatases in 
controlling the inflammatory response by redox signalling [36].

Histone acetylation and redox signalling: In has been reported 
on previous studies that CBP/p300 histone acetyl transferase ( HAT) 
complex regulates the expressions of inflammatory cytokines through 
activation of NF-kB and STAT-3 pathways [37]. This is required for 
activation of a number of inflammatory targets of NF-kB such as IL-
6, IL-8, E-Selectin, and VCAM-1 [38]. STAT3 pathway is frequently 
used in acute in inflammatory reponse is regulated by acetylation 
and phosphorylation. p300 triggers the acetylation of STAT3 and 
formation of STAT 3 dimers which are critical in the transcriptional 
activation of IL-6 [39]. Activation of these phosphorylation acetylation 
pathways, NF- kB, MAPKs and STAT3 leads to changes in chromatin 
structure in order to trigger the expression of inflammatory genes and 
production of proinflammatory cytokines that subsequently leads to 
amplification of the inflammatory process and systemic inflammatory 
response syndrome [31].

Calcium signalling: Calcium homeostasis is highly sensitive to 
redox signalling. Disruption of this seems to be an important event in 
the pathogenesis of acute pancreatitis [40]. Ca 2+ channels contain IP3R 
and RyR receptors which are rich in redox sensitive cysteine residues 
[41]. The thiol oxidation of these residues increases the activity of 
calcium channels of endoplasmic reticulum and consequent rise in 
cytosolic calcium. Intracellular hypercalcemia leads to premature 
activation of trypsinogen and subsequent cell and tissue damage [42]. 
Other redox signalling pathways involved in calcium homeostasis 
are STIM- Orai complex and plasma membrane Ca 2+ ATPase pump 
[43]. The type of cell death depends on the duration and severity of the 
cytosolic calcium levels [40].

Reactive nitrogen species (RNS) and oxidative stress

RNS are also associated with oxidative stress and pathogenesis of 
AP [44]. During inflammatory process inducible nitric oxide synthase 
(iNOS) is the main source of NO [45]. It has been seen that up to a 
certain limit NO has beneficial effect. Uncontrolled over production 
of NO can be detrimental [46]. Endogenous NOS has shown beneficial 
effect on early phase of experimental pancreatitis [47]. Mice deficient 
in iNOS has shown less lipid peroxidation and tissue damage in 
experimental AP [31].

Glutathione and oxidative stress

Reduced glutathione (GSH) is the major non protein thiol which 
plays a central role as an antioxidant [31]. The ratio of reduced (GSH) 
and oxidised glutathione(GSSG) is a reliable indicator of oxidative 
status of the body [48]. During early phase of acute pancreatitis the level 
of reduced glutathione decreases, which is a hallmark of the disease 
[49]. Studies have shown that preteatment with glutathione mono 
ethyl ester exhibit beneficial effects in AP by increasing pancreatic GSH 
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Figure 1: Central role of reactive oxygen species (ROS) in the pathogenesis of severe acute pancreatitis. NF-kB: Nuclear Factor- KappaB, MAPK: 
Mitogen activated protein kinase, STAT: Signal transducer and activator of transcription, PARP: poly-ADP ribose polymerase.
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levels [31]. Whereas inhibition of GSH synthesis with L-buthionine-
(S,R)-sulfoximine(BSO) led to more pancreatic necrosis and reduced 
survival in rats with experimental AP [50].

Xanthine Oxidase and oxidative stressors

Oxidation of the enzyme xanthine dehydrogenase(XDH) leads 
to the production of a large amount of free radicals [31]. Activation 
and conversion of this enzyme to xanthine oxidase (XO) occurs via 
two mechanisms. First,during conversion of chymotrymsinogen to 
chytmotrypsin; second, by oxidation of the thiol groups [51]. Studies 
have shown beneficial effect of allopurinol (inhibitor of XO) in 
experimental pancreatitis by reducing pancreatic edema, necrosis and 
systemic inflammatory response [52]. However effect of allopurinol in 
prevention of post ERCP pancreatitis and in treatment of AP is not 
clear [53]. 

Extracellular Haemoglobin
Recently extracellular haemoglobin in plasma that comes from 

pancreatic ascites has been found to be associated with severe acute 
pancreatitis [7]. Extracellular haemoglobin causes lipid peroxidation 
and activation of proinflammatory cytokines like TNF-α and IL-1β [7]. 
It also promotes leukocyte infiltration in lungs and induces hypoxia 
inducible factor (HIF)-vascular endothelial growth factor(VEGF) 
pathway [54]. Thus extracellular haemoglogin can contribute to 
pulmonary edema and acute respiratory distress by increasing vascular 
permeability in lungs through HIF-VEGF pathway [55].

Sanfey et al. were the first to show beneficial effects of anti-oxidant 
therapy in form of super-oxide dismutase and catalase in acute 
pancreatitis, thereby providing an indirect proof of role of oxidative 
stress in the disease pathogenesis [8]. Since then a lot of studies 
have demonstrated the role of oxidative stress in the pathogenesis of 
experimental pancreatitis [56]. It is well known that oxygen free radicals 
play a central role in initiation and accentuation of inflammatory 
process in acute pancreatitis. However most of the data are form 
experimental studies using animal models, only few have been derived 
from clinical studies [56]. The paucity of data from human studies is 
because of the unprecedented delay in patient presentation, which 
limits the investigations from the pathogenic mechanisms involved in 
initiation of the disease [57].

It is very difficult to measure oxygen free radicals directly because 
of its high reactivity [56]. For this reason stable metabolites of oxidative 
reactions have been accepted as the biomarkers of oxidative stress 
in acute pancreatitis. Malonaldehyde (MDA), protein carbonyls, 
thiobarbituric acid reactive substances (TBARS), pro-oxidative and 
anti-oxidative enzymes ( Superoxide Dismutase (SOD), Catalase 
(CAT), myeloperoxidase (MPO), xanthine oxidase (XO), reduced 
glutathione(GSH) and the levels of natural antioxidants( Vitamin-C, 
Selenium) have been used as biomarkers of oxidative stress in most of 
the experimental studies [58]. All these biomarkers indirectly prove the 
role of oxidative stress in the pathogenesis of acute pancreatitis. 

Antioxidant therapy

Halliwell in 1997 described antioxidants as, “any substance that, 
when present in low concentrations compared to those of an oxidizable 
substrate, significantly delays or prevents oxidation of that substance” 
[59]. These molecules scavenge highly toxic free radicals and prevent 
tissue from oxidative damage. As oxidative stress plays a central role in 
pathophysiology of acute pancreatitis much emphasis has been given 
to antioxidant therapy in the treatment and prevention of the disease. 

Though various antioxidants have been studied in various experimental 
models only a few have been implemented clinically.

Vitamins C, A and E all have been extensively used as antioxidant 
in acute pancreatitis either as a single agent or in combination. In a 
randomized controlled trial in 2003 by Du et al. intravenous vitamin C 
was administered to 40 patients in dose of 10 g/day for 5 days with results 
of decrease in serum levels of TNF-alpha,IL-1, IL-8, CRP with increase 
in plasma levels of vitamin E, C, beta-carotene and lipid peroxide [60]. 
Length of hospital stay, deterioration of disease was reduced with 
overall improvement in disease course. In another similar study Sateesh 
et al. in 2009 used vitamin C in combination with N-acetyl cystiene and 
antoxyl forte and found similar results with decrease in the length of 
hospital stay and complications; whereas Bansal et al. in 2011 used all 
the three vitamins in comination without any significant differences in 
outcome in control and study group [61,62]. To our knowledge there 
has been no clinical studies on vitamin E or A as single agents.

N-acetyl cysteine (NAC), a thiol compound & a precursor of 
glutathione acts as a free radical scavenger. It interferes through its 
reducing capabilities in signaling pathways that regulate cell cycle, 
apoptosis, and inflammation. Siriwardena et al. in 2008 showed in 
their randomized, double blinded control trial using NAC along with 
vitamin C and selenium that serum levels of amylase, lipase and CRP 
were reduced where as no difference was noted in organ dysfunction, 
length of hospital stay and mortality rates [63]. Milewski et al. in 2006 
used NAC in prevention of post-ERCP pancreatitis by giving oral and 
intravenous NAC both before and after ERCP without any positive 
outcome [64].

Selenium, a micronutrient found in trace amounts is a co factor of 
antioxidant enzyme glutathione peroxidase and helps in reduction of 
hydrogen peroxide as well as lipid hydroperoxidases. Kuklinski et al. in 
1994 in their clinical study showed that early selenium therapy in acute 
pancreatitis may improve prognosis and outcome of the disease where 
as Lindner et al. in 2004 could not find any beneficial effect of sodium 
selenite in patients with acute pancreatitis [65,66]. 

Glutamine, semi essential amino acid and has antioxidant properties 
due to its capacity to normalize superoxide dismutase and blockage of 
nitric oxide overproduction [67]. Fuentes-orozco et al. in 2008 in their 
randomized control trial found administration of glutamine along with 
total parentral nutrition had favourable outcome in acute pancreatitis 
with reduced duration of shock, APACHE II scores and infectious 
morbidity in the course of disease [68]. Serum levels of IL-6, CRP were 
reduced where as IL-10, albumin, and protein were raised. Sahin et 
al. in 2007 had similar results with decreased complication rates with 
glutamine enriched total parentral nutrition [69]. 

Recent experimental studies and future perspectives on 
antioxidant therapy

Keeping in view the oxidative stress as the pathogenesis of acute 
pancreatitis a lot of experimental studies (Table 1) have been undertaken 
in past few decades using various antioxidant molecules. Almost all of 
these studies are based on chemically induced pancreatitis on rats by 
infusion of either cerulin, L-aghinine or sodium taurocholate. Infusion 
into peritoneal cavities or into ductal system induced pancreatitis in 
these rats that were pretreated with the antioxidant molecules. After 
sacrificing the animals, assays of oxidative stress markers were done 
both in serum as well as histopathological specimens. All of the studies 
reviewed by us showed promising results with chemo-preventive 
effects of the antioxidants on chemically induced pancreatitis. 
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Conclusion
Oxidative stress and reactive oxygen species, both play pivotal 

roles in pathophysiology of AP during the initial phase of the disease. 
Extensive research has been undertaken in the past and present 
involving various markers of OS. They have also provided an insight 
into the fairplay of numerous antioxidants in preventing and treating 
this dreaded condition. Though few clinical trials have showed 
promising results on this unconquered disease, still adequate number 
of large, multicenter, randomized, double-blinded clinical trials are 
lacking at this point of time to give a conclusive scenario on antioxidant 
therapy and its clinical efficacy. Novel targeted therapeutic options 
against various signaling molecules of oxidative stress needs further 
research and the spectrum of antioxidant therapy established through 
extensive human trials to gain an upper hand against the clinical course 
of the disease.
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