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Introduction
Particle Swarm Optimization (PSO) is one of the modern heuristic 

algorithms [1]. It was developed through simulation of simplified 
social systems, and has been found to be robust in solving nonlinear 
optimization problems [1,2]. PSO can generate good-quality solutions 
with stable convergence characteristic at a high speed [3,4]. Shi and 
Eberhart introduced a linearly decreasing inertia weight [5,6]. A 
fuzzy controller is used to adapt the inertia weight dynamically [7,8]. 
Clerc and Kennedy analyzed particle’s trajectory and introduced a set 
of coefficients to control convergence tendencies [9]. Kennedy and 
Mendes investigated various population topologies and proposed the 
Von Neumann topological structure [10,11]. Parsopoulos and Vrahatis 
combined local and global best topologies and proposed Unified PSO 
(UPSO) [12].Mendes, Kennedy and Neves proposed Fully Informed 
Particle Swarm (FIPS) which all of a particle’s neighbors’ previous best 
positions are considered to calculate the next positions [13]. By moving 
particles towards nearby particles with better fitness, Peram et al. 
proposed Fitness–Distance-Ratio based PSO (FDR-PSO) [14]. Van den 
Bergh and Engelbrecht, by using multiple swarms to optimize different 
components of the solution vector cooperatively, designed Cooperative 
Particle Swarm Optimizer (CPSO-H) [15]. A new method to maintain 
diversity in a standard generational evolutionary algorithm was 
proposed by creating subpopulations [16]. The notion of subpopulation 
is applied to the hybrid model based on the PSO and the standard 
genetic algorithm (GA) [17]. Comprehensive Learning Particle Swarm 
Optimizer (CLPSO) which performs well on multimodal problems 
is introduced [18]. In CLPSO each dimension of a particle may learn 
from the corresponding dimension of different particle’s personal best 
solution. An elitist learning strategy is introduced, and by evaluating 
the population distribution and particle fitness, inertia weight and 
acceleration coefficients of Adaptive PSO (APSO) are controlled [19]. 
A mechanism is integrated in the velocity update formula of Cellular 
PSO to modify trajectories of particles to avoid being trapped in local 

optimums [20]. In order to improve exploration ability, a random 
velocity is added to the velocity updating [21]. Inspired by the migratory 
behavior in the nature, the population is randomly partitioned into 
several sub-swarms, and some particles migrate from one complex 
to another to enhance the diversity of the population at periodic 
stage in the evolution [22]. By decomposition of the search space into 
subspaces which are probed by sub-swarms, a master–slave model for 
parallel cooperative micro-particle swarm optimization is introduced 
[23]. A PSO with Random Dimension Selection (PSORDS) algorithm 
by utilization of random dimension selection instead of stochastic 
coefficients is proposed [24]. While several PSO variants have been 
proposed, the complications were introduced in order to improve the 
PSO algorithm. Hence, a simplified novel technique is introduced in 
this paper. In this paper, to improve exploration of search space and 
escaping local minima, the particles are restricted to subspaces, and 
for increasing convergence, acceleration coefficients are improved. 
The rest of this paper is organized as follows. In the above section it 
gives a brief review on the original PSO algorithm. The above section 
introduces PPSO in details, followed by the other Sections analyzing 
the parameters used in PPSO. Experimental results and comparison 
study to verify the capability of PPSO are shown in the Section below. 
Finally, Conclusion concludes the paper.

Basic Concept of Particle Swarm Optimization
James Kennedy and Russell C. Eberhart [1] originally proposed 

*Corresponding author: M.J. Mahmoodabadi, Department of Mechanical
Engineering, Sirjan University of Technology, Sirjan, Iran, E-mail: 
mahmoodabadi@sirjantech.ac.ir 

Received April 18, 2013; Accepted July 17, 2013; Published July 20, 2013

Citation: Bisheban M, Mahmoodabadi MJ, Bagheri A (2013) Partitioned 
Particle Swarm Optimization. J Appl Computat Math 2: 133. doi:10.4172/2168-
9679.1000133

Copyright: © 2013 Bisheban M, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
The particle swarm optimization (PSO) is a population-based optimization method inspired by flocking behavior 

of birds and human social interactions. So far, numerous modifications of PSO algorithm have been published, 
which make the PSO method more complex. Several improved PSO versions succeed in keeping the diversity of the 
particles during the searching process, but at the expense of convergence speed. This paper is aimed at increasing 
the rate of convergence and diversity of solutions in the population via two easy techniques: 

(a) Applying improved acceleration coefficients

(b) Dividing search space into blocks. In particular, the second technique is efficient in the case of functions
with optimal design variables situated in the one block. Hence, instead of proposing more complex variant of PSO, 
a simplified novel technique, called Partitioned Particle Swarm Optimizer (PPSO), has been proposed. In order to 
find optimal coefficients of this method, an extensive set of experiments were conducted. Experimental results and 
analysis demonstrate that PPSO outperforms nine well-known particle swarm optimization algorithms with regard 
to global search.
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the PSO algorithm for optimization. PSO is a population-based search 
algorithm based on the simulation of the social behavior of birds within 
a flock. Although PSO was originally adopted to balance weights 
in neural networks [25], it soon became a popular global optimizer, 
mainly in problems which the decision variables were real numbers 
[26,27]. In PSO, particles are flown through hyper-dimensional search 
space. Changes to the position of particles within search space are based 
on social-psychological tendency of individuals to emulate success of 

the others. Let ( )ix t
→

 denote position of particle i, at time step t. The 

position of ( )ix t
→

 is then changed by adding a velocity ( )iv t
→

 to the 

current position:

( 1) ( ) ( 1)i i ix t x t v t
→ → →

+ = + +                 (1)

The velocity vector reflects the socially exchanged information and, 
in general, is defined in the following way:

1 1 2 2( 1) ( ) ( ( )) ( ( ))ipbest gbesti i i iv t W v t C r x x t C r x x t
→ → → → → →

+ = + − + −    (2)

where r1,r2 have random real values with uniform distribution in [0,1]. 
C1 is the cognitive learning factor and represents the attraction which 
a particle has toward its own success. C2  is the social learning factor 
and represents the attraction that a particle has toward the success of 
the entire swarm. W is the inertia weight, which is employed to control 

the effects of previous velocity on the current velocity. 
ipbestx

→
 is the 

personal best position of the particle i. gbestx
→

 is the position of the 
best particle in the entire swarm.

PPSO
In this section, a novel variant of PSO is proposed, which is 

improved by a new search technique and utilizing modified acceleration 
coefficients to update particle positions. Traditional PSO algorithms 
easily fall into stagnation, when no particle is able to discover a better 
position than its previous best position on several iterations. The aim 
of introducing subspaces is to restrict particles to keep diversity, and 
attempt to evade suboptimal convergence. Search space is divided 
into subspaces, and particles are forwarded to them to explore global 
minimums. This strategy allows particles to explore large areas on initial 
iterations, and in multimodal landscapes, particles can simultaneously 
locate multiple optima, quickly and precisely. Actually, particles 
forwarded to a region work as a team. Each team explores one subspace 
without sharing information with other teams and achieves the best 
global solution there. Each dimension is divided into R parts as follows:

1
min min=x x    (3)

1
min max , 2, ,−= = …r rx x r R   (4)

max min
max min , 1, 2, ,−

= + = …r r x xx x r R
R

                  (5)

Where R defined as the number of subspaces. If the search space is 
defined as [xmin, xmax], the search bounds of rth subspace is defined by 

mn axmi[ , ] r rx x .

Search algorithm

As well as search space, population is divided in to R subpopulations. 
The number of members in a group is the integer part of the result of 
dividing the population number by R. If the reminder is not zero, the rest 

of particles will be added randomly to groups. Each group has been sent 
to a special region. While the initial positions are distributed randomly, 
groups start exploring simultaneously for a maximum allowed number 

of iterations. By calculation of fitness values,  ,i rpbestx
→

, and ,gbest rx
→

 of 
subspaces are determined, while there is no relationship among groups. 
Finally, personal best positions and the best particles are memorized as 

,, i rF pbestx
→

 s and , ,F gbest rx
→

 s. 

In the transition step, all particles are initialized with uniform 
random distribution in the entire search space to have another 
opportunity to find global optimum. After determinate the number of 
iterations, personal best positions and the best particle are memorized 

as , iT pbestx
→

 s and ,T gbestx
→

. In both of the first and the transition stages, 

if the global minimum in rth region is found or better gbestx
→

 after 
ε iterations cannot be found, rth group will stop searching. Therefore, 
iteration number of the second stage may be increased. Comparing 

results of the first and the transition stages, gbestx
→

 for the second stage 

is selected. If gbestx
→

 is obtained from rth group, this group will be 
called best r group. In the second stage, in order to avoid being trapped 
in local minima and to discover better positions, particles can fly in the 
entire search space. Particles are initialized as the pseudo code shown 
in Figure 1.

Particles in the best r group remain in their positions while others 
jump to new positions around the best solution, as follows:

( )1 ( , )µ σ+ = +


 

i gbestx t x normrnd     (6)

Where ( , )µ σ


normrnd  is a vector randomly generated by normal 
distribution with a mean parameter μ and a standard deviation 
parameter σ. Here, μ and σ are set to 0 and 1 respectively [19]. Iteration 
number of last stage is defined as follows:

If gbestx
→

= gbestTx ,

→

 for i=1:ps 

ipbestx
→

= ipbestTx ,

→

end 
else  for r=1:R 

       if r=best r 
for i=1: PS/R 

ipbestx
→

= ripbestFx ,,

→

 end 
 else 

       for i=1: PS/R 
perform Equation 6 
end 

 end 
 end 

end 

𝑃𝑃 𝑆𝑆= population size, 
𝑅𝑅 = number of subspaces 

Figure 1: Pseudo code of initializing personal best positions in second stage.
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itterations of second stage= 
1

1
( ) ( )

=

+
− ×∑R

i
FE NM i IT i

PS
                      (7)

where, FE is referred as the function evaluations, NM(i) as the number 
of members in ith group, and IT(i) as the number of iterations of ith 
group. The Pseudo code of PPSO is shown in Figure 2.

Acceleration coefficients

In this paper, acceleration coefficients, social learning factor (C2) 
and cognitive learning factor (C1), are initialized to 2.0 and increased 
over iterations as follows [28]: 

( ) ( )1 , 1,2δ+ = + =j j jC t C t j  			                    (8)

Reference [28] proposed δ j  as a random value in the interval 
[0.01 0.1]. The interval [0.05 0.1] is applied for δ j  selection in [19]. In 

order to find optimal interval for PPSO, an extensive set of experiments 
was conducted, and uniformly generated random values in interval 
[0.0250.80] is chosen. The sum of  C1 and C2 should be clamped between 
3.0 and 4.0, each of them should be set between 0 and 4 [28]. If the sum 
is larger than 4.0, the following expressions to set the coefficients are 
developed:

( ) ( ) ( )1 1 1 1 21 ( ) / ( )α+ = +C t C t C t C t  			                  (9)

( ) ( ) ( )2 2 2 1 21 ( ) / ( )α+ = +C t C t C t C t  			                 (10)

If the sum is smaller than 3.0 both of coefficients are magnified by: 

( ) ( ) ( )1 3 1 1 21 ( ) / ( )α+ = +C t C t C t C t  			                  (11)

( ) ( ) ( )2 3 2 1 21 ( ) / ( )α+ = +C t C t C t C t  			                 (12)

In [19], α1 and α2=4.0 are considered. Experiments over our 
algorithm reveal that 1 0.5α = , 2 0.8α = , 3 3α =   lead to perform well on 
most of test functions. 

Figure 3 illuminates changes of acceleration coefficients over 80 
iterations. Initially, both of coefficients are set equal to two. In the second 
iteration, C2 and C1 fall substantially to 0.39 and 0.25 respectively, so 
the effect of inertia weight increases. It can help particles explore new 
regions, and the ability to flee from local minima may be improved. 
After sharply growing C2 and C1 to 1.88 and 1.12, respectively, they 

steadily rose to 2.02 and 1.28, respectively. This results in stronger 

tendency toward search around gbestx
→

. Again the black line declines 
to 0.43 and the red line decreases to 0.23. In two iterations they grow 
to 2.08 and 1.25 respectively. However, both of the social and cognitive 
learning factors reveal similar trends, a small gap between them leads to 
discourage premature convergence. Therefore, there is a good balance 
between the ability to explore new regions and search a smaller region 

around gbestx
→

. On the other hand, on the first iterations, C2 is greater 
than C1, so the tendency toward success of entire swarm is greater 
than individual’s success. In contrast, from iteration 16 to 38, except 
iteration 22, the pattern changes with higher maximum values of C1. 
These variations are another cause of the ability of algorithm to escape 
from local minima.

Inertia weight

In this paper, adaptive inertia weight is used which is given in 
Equation (13) [19].

( ) [ ]2.6

1 0.4,0.9
1 1.5 −= ∈
+ fW f

e  	  		                (13)

Where 0.4 and 0.9 are initial and final values of the inertia weight, 
respectively. The parameter f, which is called evolutionary factor, is 
defined by (14).

[ ]min

max

0,1
−

= ∈
−

g

min

d d
f

d d
  				                   (14)

1

21 ( )
1 =

= −
− ∑ ∑

N D

j k

k k
i i jd x x

N
  			                 (15)

Where  di is the mean distance of particlei to all of the other 
particles in its group, which can be measured using a Euclidian metric 
(15). N and D are population size of a group and number of dimensions 
respectively.   of the globally best particle is denoted as dg. By comparing 
all di’s, the maximum and minimum distances, dmax and dmin are 
determined in a group, respectively.

 
first stage: 
partition search space into R subspaces 
divide population into R subpopulations 
for r=1:R 
   perform PSO on rth subpopulation within rth subspace 

    determine ripbestFx ,,

→

s and rgbestFx ,,

→

s 
end 
transition stage: 
perform PSO on population within search space 

determine ipbestTx ,

→

s and gbestTx ,

→

 
second stage: 
initialize 𝑥𝑥 s as the pseudo code shown in Figure 1 
perform PSO 

determine gbestx
→

 
 
 
𝑃𝑃 𝑆𝑆= population size, 
𝑅𝑅 = number of subspaces 

Figure 2: Pseudo code of PPSO.
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Analysis of PPSO
In order to get an insight of how parameters influence performance 

of PPSO, in the following sections the parameters of PPSO will be 
changed separately to gain the best ranges. All parameters of the PPSO 
are set as Table 1, except those will be noted. The mean results of 30 
independent trials will be presented. An extensive set of experiments 
were conducted over different test functions, but a few of them are 
selected randomly to be shown in this paper.

The twenty one benchmark functions, which represent challenges 
for optimization methods, are used. The name of function, search range 
of variables, location of global optimum ( )optx , and corresponding 
optimum value )(( )optf x  are summarized in Table 2. Note that these 
test functions should be minimized.

The term ( )

iv t  is limited to the range max max[ , ]− +v v  which vmax 
is set to 20% of the search range [29]. If the dth dimension velocity 
violates this range, then it will be replaced by sign ( )d d

i madv v . The 
equation ( )max minmin( ,max , )=d d d d

i ix x x x  is used to prevent the particles 

moving out of the search bounds while the search range is defined as  
min max[ , ]x x . Number zero returns numbers less than 10-324 in all of the 

following tables.

Advantages of PPSO

In this section, modified acceleration coefficients and partitioning 
search space into blocks will be judged solely on their own merits. 
The adaptive inertia weight described in sections 4.3 and both of 
acceleration coefficients set to 2.05 is chosen. By partitioning search 
space without applying modified acceleration coefficients, effects of 
this technique on the performance of PPSO are revealed and vice versa. 
The results are presented in Tables 3 and 4. It can be seen that the easy 
technique of partitioning search space into blocks not only makes the 
searching ability stronger, but also increases the rate of convergence.

Number of subspaces

In this section, the number of subspaces is determined in order to 
ensure sufficient diversity of particles (Table 4). It seems that, greater 
number of subspaces leads to greater probability that the algorithm 
is able to explore regions without attractions of local minima of other 
regions. On the other hand; the rate of convergence becomes slower if 
the number of subspaces increases. Furthermore, if dimensions of the 
global minimum are placed in different regions, increasing the number 
of subspaces cannot help to reach the global minimum. Therefore, there 
should be a balance. An exhaustive set of experiments are conducted 
with fixed number of particles in order to investigate the number of 
regions which contributes to good results. If the number of regions is 

Number of iterations of first stages 500
Dimension of unfixed number functions 30

δj [0.0250.050]
α1 0.5
α2 0.8
α3 3
ε 10

Population size 36
Total iterations 5000

Number of subspaces 6

Table 1: Suggested parameter values for PPSO.

NO. Name Search range (xopt) f(xopt)
1 Sphere [-100,100]D [0, 0, . . .,0] 0
2 Rosenbrock [-2.048,2.048]D [1, 1, . . .,1] 0
3 Quadric [-100,100]D [0, 0, . . .,0] 0
4 Griewank [-600,600]D [0, 0, . . .,0] 0
5 Weierstrass [0-0.5,0.5]D [0, 0, . . .,0] 0
6 Quartic [-1.28,1.28]D [0, 0, . . .,0] 0
7 Nonc_Rastri [-5.12,5.12]D [0, 0, . . .,0] 0
8 Rastrigin [-5.12,5.12] D [0, 0, . . .,0] 0
9 Beale [-4.5,4.5]2 [3, 0.5] 0

10 Bohachevsky1 [-100,100]2 [0,0] 0
11 Bohachevsky2 [-100,100]2 [0,0] 0
12 Bohachevsky3 [-100,100]2 [0,0] 0
13 Booth [-10,10]2 [1, 3] 0
14 Branin [-5,10],[0,15] [-π, 12.275], [π, 2.275], 

[9.42478,2.475]
0.397887

15 Easom [-100,100]2  -1
16 Hartmann1 [0,1]3 -3.86278
17 Hump [-5,5]3 [0.114614,0.555649,

0.852547]
-1.0316

18 Matyas [-10,10]3 [0.0898,-0.7126], 
[-0.0898,0.7126]

0

19 Michalewics1 [0, π]2 [0,0] -1.8013
20 Michalewics2 [0, π]5 [2.2029055,1.5707963] 

[2.2029055,1.5707963,
1.2849916,1.9230585,

1.7204698]

-4.6876582

21 Needle-in-
a-haystack

[-5.12,5.12]2 [0,0] -3600

Table 2: Test Functions.
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increased, the number of particles of each group will be decreased. So 
there should be a balance between the number of subspaces and total 
number of particles to enhance good explorations in subspaces.

Iteration number of first stage

Optimal maximum allowed number of iterations of the first stage 

is associated with 0020 maximum allowed number of iterations of the 
second stage.

_ ( ) _= × × + + ×FE F IT NM R PS S IT PS     		                (16) 

where F _IT and S _IT are maximum allowed number of iterations of 
the first and second stages respectively. PS is population size. NM is 

Algorithm
Function

Simple Variant of PSO PSO only with modified 
acceleration coefficients

PSO only with partitioning 
search space

PPSO

f1 Best
Worst                      
Mean

Std. Dev.

5.3980×10-86

3.2497×10-87

1.6472×10-79

7.2616×10-79

0
2.3037×10-137

2.1460×10-136

6.0325×10-136

0
4.8384×10-94

2.4192×10-95

1.0819×10-94

0
1.5154×10-136

7.5770×10-138

3.3885×10-137

f2 Best
Worst                      
Mean

Std. Dev.

1.8824×10+1

2.5290×10+1

2.0009×10+1

1.6533

7.3931×10-1

2.49751
1.6701

4.342×10-1

1.9104×10-8

1.2292×10-4

2.7554×10-5

3.2341×10-5

6.9124×10-12

1.5005×10-6

2.0057×10-7

3.8164×10-7

f3 Best
Worst                      
Mean

Std. Dev.

5.2318×10-4

4.0336×10-2

6.3514×10-3

9.4327×10-3

0
3.5010×10-32

4.7657×10-33

1.0955×10-32

0
4.3337×10-35

4.2690×10-36

1.3141×10-35

0
1.5511×10-46

7.7560×10-48

3.4684×10-47

f4 Best
Worst                      
Mean

Std. Dev.

0
3.2020×10-2

9.6035×10-3

9.9730×10-3

0
7.3960×10-3

7.3960×10-4

2.2764×10-3

0
0
0
0

0
0
0
0

f5 Best
Worst                      
Mean

Std. Dev.

0
2.4984

6.6790×10-1

8.1019×10-1

0
2.6221×10-1

6.1906×10-2

8.8027×10-2

0
2.8242×10-5

1.4121×10-6

6.3151×10-6

0
0
0
0

f6 Best
Worst                      
Mean

Std. Dev.

1.2633×10-3

4.7395×10-3

3.0865×10-3

9.4352×10-4

3.2819×10-5

7.5766×10+1

2.8834×10+1

2.4067×10+1

3.0071×10-5

2.9000×10-3

1.1975×10-3

9.4450×10-4

2.8664×10-5

0.00252×10-4

7.7829×1-4

7.6605×10-4

f7 Best
Worst                      
Mean

Std. Dev.

1.4000×10+1

3.9000×10+1

2.6000×10+1

7.8001

0
4.2000×10+1

1.3500×10+1

1.6116×10+1

0
0
0
0

0
0
0
0

f8 Best
Worst                      
Mean

Std. Dev.

1.5919×10+1

5.4722×10+1

3.5619×10+1

1.1788×10+1

0
4.4773×10+1

8.1586
1.6787×10+1

0
0
0
0

0
0
0
0

Table 3: Merits of modified acceleration coefficients and partitioning search space on PSO.

 Number of
 Subspaces

Function

2 3 6 7 10 11 14 15 17 18 19

f2   Mean
Std. Dev.

4.0312
3.0563

9.1836E-6
1.0948E-5

7.6532E-6
7.1094E-6

1.8902E-6
2.5823E-6

2.5992E-6
3.1969E-6

5.9704E-7
7.9011E-7

2.0540E-7
1.9815E-7

4.6731E-8
6.2346E-8

5.7236E-7
6.3662E-7

2.4536e-6
3.3057e-6

3.0786E-6
4.9099E-6

f6   Mean
Std. Dev.

0.0021984
0.0015983

0.0020557
0.0023226

0.0029927
0.0019425

0.0024364
0.0019783

0.0021393
0.0016112

0.0026192
0.0024394

0.0028811
0.0024995

7.7829E-4
7.6605E-4

0.0017587
0.0013614

0.0018858
0.0017758

0.0019014
0.0007980

Table 4: Number of Subspaces in PPSO.

δ1,2 
Function

[0.025, 0.05] [0.05, 0.1] [0.1, 0.2] [0.2, 0.4] [0.4, 0.8] [0.8, 1] [0.4, 1] [0.025, 0.1] [0.025, 0.2] [0.025, 0.4] [0.025, 0.8] [0.025, 1]

f2   Mean
Std. Dev.

2.0540×10-7

1.9815×10-7
2.0228×10-7

3.0964×10-7
3.9130×10-7

6.3112×10-7
2.4374×10-7

3.9810×10-7
1.1846×10-5

2.2811×10-5
1.1900×10-4

3.0265×10-4
8.1805×10-6

2.2520×10-5
5.9091×10-7

1.1365×10-6
1.1491×10-7

1.2335×10-7
7.2238×10-8

8.2123×10-8
4.6731×10-8

6.2346×10-8
1.0050×10-7

1.7269×10-7

f6   Mean
Std. Dev.

1.2547×10-3

1.0330×10-3
1.7693×10-3

1.1993×10-3
1.3519×10-3

1.0320×10-3
1.0961×10-3

8.1700×10-4
1.1639×10-3

1.0881×10-3
1.2852×10-3

9.9044×10-4
1.0922×10-3

7.9003×10-4
1.2235×10-3

1.2530×10-3
1.2235×10-3

1.2530×10-3
1.6870×10-3

9.4670×10-4
7.7829×10-4

7.6605×10-4
1.3320×10-3

1.2088×10-3

Table 6: Effects of parameters of acceleration coefficients.

 N
Function

0.163 0.111 0.081 0.053 0.020 0.010 0.005 0.002

f2   Mean
Std. Dev.

8.3517E-8
1.0213E-7

4.6731E-8
6.2346E-8

1.00134E-7
2.6681E-7

6.3684E-8
8.4437E-8

5.2527E-8
5.0510E-8

2.1609E-7
2.0105E-7

0.48498
0.82835

0.53811
0.75343

f6   Mean
Std. Dev.

0.0010682
8.4955E-4

7.7829E-4
7.6605E-4

0.0015144
8.6131e-4

0.0013360
9.9126E-4

0.0013307
7.5878E-4

0.0014006
0.0011257

0.0020807
0.0012582

0.0020584
0.0013340

Table 5: Effects of ratio of number of iterations of first stage to number of iterations of second stage.
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referred as the number of members in each group, FE as the number of 
function evaluations, and R as the number of subspaces. By substituting  

=
PSNM
R

 in Equation (16), we have:

/ __
2
−

=
FE PS S ITF IT   				                   (17)

By choosing the value of F _IT carefully, a configuration can be 

α1 
Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2   Mean
Std. Dev.

4.0078×10-6

6.4849×10-6
1.3823×10-6

3.2109×10-6
2.3504×10-7

4.0190×10-7
2.2685×10-7

2.1163×10-7
4.6731×10-8

6.2346×10-8
8.9373×10-8

1.6042×10-7
1.6833×10-7

3.7672×10-7
5.5808×10-7

1.6830×10-6
3.0005×10-6

4.5625×10-6

f6   Mean
Std. Dev.

1.5318×10-3

1.0490×10-3
1.5440×10-3

9.9581×10-4
1.0815×10-3

7.1119×10-4
9.9886×10-4

1.0532×10-3
7.7829×10-4

7.6605×10-4
1.3403×10-3

1.2204×10-3
1.2665×10-3

1.4148×10-3
1.0240×10-3

9.3906×10-4
1.8199×10-3

1.1178×10-3

Table 7: Effects of parameter α1

α1 
Function

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2   Mean
Std. Dev.

2.4489×10-6

2.8687×10-6
4.7842×10-6

7.5940×10-6
1.4936×10-6

2.2980×10-6
1.2971×10-6

2.6730×10-6
5.0263×10-7

6.0714×10-7
5.6400×10-7

1.1954×10-6
1.6270×10-7

2.9078×10-7
4.6731×10-8

6.2346×10-8
2.7127×10-7

6.0852×10-7

f6   Mean
Std. Dev.

1.0179×10-3

6.0484×10-4
1.2031×10-3

1.0798×10-3
1.0798×10-3

6.7911×10-4
1.0281×10-3

6.3793×10-4
1.2706×10-3

9.6123×10-4
1.1096×10-3

9.9833×10-4
1.4781×10-3

1.3642×10-3
7.7829×10-4

7.6605×10-4
1.0770×10-3

9.4116×10-4

Table 8: Effects of parameter α2

α1 
Function

1.5 2 2.5 3 3.5 4 4.5 5

f2   Mean
Std. Dev.

1.0379×10-2

1.2764×10-2
1.2946×10-4

2.3032×10-4
1.7700×10-7

3.3328×10-7
4.6731×10-8

6.2346×10-8
6.5411×10-3

6.2742×10-3
1.3856

7.125×10-1
1.9446
1.1841

1.8021
7.843×10-1

f6   Mean
Std. Dev.

2.1145×10-3

2.7532×10-3
2.2674×10-3

1.9325×10-3
1.5028×10-3

1.5653×10-3
7.7829×10-4

7.6605×10-4
1.3546×10-3

7.9550×10-4
1.9185×10-3

1.9474×10-3
2.9698×10-3

2.6959×10-3
2.1282×10-3

2.6912×10-3

Table 9: Effects of parameter α3

Algorithm Year Reference
PSO-w 1998 [5]
PSO-cf 2002 [9]

PSO-cf-local 2002 [10]
UPSO 2004 [12]
FDR 2003 [14]
FIPS 2004 [13]

CPSO-H 2004 [15]
CLPSO 2006 [18]

CPSO-outer 2010 [20]

Table 10: PSO algorithms used in the comparison.

Table 11: Comparison of results on Sphere test function among ten PSOs.

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10

Best
Worst            
Mean

Std. Dev.

6.16×10-140

3.98×10-131

3.52×10-132

9.46×10-132

4.79×10-6

9.96×10-6

8.36×10-6

1.65×10-6

3.91×10-6

9.94×10-6

8.37×10-6

1.56×10-6

8.98×10-232

2.72×10-225

1.97×10-226

0

4.69 ×10-225

1.80×10-241

5.99×10-243

0

7.34×10-55

7.28×10-52

1.33×10-52

1.81×10-52

4.55×10-29

1.02×10-24

1.17×10-25

2.42×10-25

3.58×10-78

6.77×10-75

3.98×10-76

1.24×10-75

0
0
0
0

0
0
0
0

30 
Best

Worst                        
Mean

Std. Dev.

1.13×10-33

3.45×10-28

1.72×10-29

6.53×10-29

7.37×10-6

9.93×10-6

9.26×10-6

6.63×10-7

7.38×10-6

9.94×10-6

9.03×10-6

6.65×10-7

1.82×10-89

5.00×10-85

3.22×10-86

9.09×10-89

1.41×10-107

1.42×10-95

5.84×10-97

2.63×10-96

1.59×10-12

2.16×10-11

4.46×10-12

3.66×10-12

4.20×10-09

1.84×10-07

3.98×10-8

3.94×10-8

3.27×10-23

1.57×10-21

3.70×10-22

4.31×10-22

0 (27)
2.81×10-69

9.48×10-71

5.13×10-70

0 (27)
1.51×10-136

7.57×10-138

3.38×10-137

Table 12: Comparison of results on Rosenbrock test function among ten PSOs.

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10 

Best
Worst                        
Mean

Std. Dev.

1.03×10-2

3.99
1.09

8.18×10-1

2.05×10-4

3.99
2.68×10-1

1.01

4.70×10-3

4.05×10-2

1.25×10-2

7.41×10-3

5.70×10-4

4.37×10-3

1.87×10-3

9.53×10-4

5.41×10-5

2.55×10-2

1.1×10-3

4.62×10-3

4.08×10-1

6.34×10-1

5.16×10-1

5.64×10-2

3.80×10-4

7.24×10-2

3.60×10-2

2.30×10-2

1.16×10-2

3.48
1.40
1.07

0 (26)
 3.99

2.66×10-1

1.01

7.64×10-13

5.79×10-9

9.26×10-10

1.75×10-9

30 
Best

Worst                        
Mean

Std. Dev.

1.05
4.38
2.07
1.20

9.07
1.46×10+1

1.14×10+1

1.95

2.41×10+1

2.94×10+1

2.26×10+1

2.26

1.40×10+1

1.66×10+1

1.55×10+1

8.96×10-1

5.36
8.98
6.76
1.34

2.38×10+1

2.48×10+1

2.44×10+1

3.10×10-1

1.37×10-2 
7.26×10+1

1.72×10+1

2.16×10+1

1.22×10+1

2.22×10+1

1.83×10+1

3.59

1.05×10-4

3.46
1.01

6.65×10-1

6.04×10-10

2.18×10-7

4.67×10-8

6.23×10-8
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found which maintains the balance between F _IT and  F _IT. The ratio 
of F _IT to S _IT s defined as N:1 Table 5, which lists the results gained 
by different values of parameter N, makes it clear that which value 
should be set to achieve a better performance.

Table 5 represents that there is no much difference between high 
numbers of iterations of the first stage. Therefore,ε is set to 10. On the 
other hand, because of incomplete search in subspaces, few numbers of 
iterations of the first stage led to poor performance.

Table 13: Comparison of results on Quadric test function among ten PSOs.

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10 

Best
Worst                        
Mean

Std. Dev.

5.88×10-136

2.12×10-128

8.28×10-130

3.86×10-129

5.14×10-6

9.91×10-6

7.81×10-6

1.34×10-6

3.63×10-6

9.74×10-6

8.39×10-6

1.51×10-6

1.36×10-234

4.80×10-225

1.61×10-226

0

1.47×10-267

1.71×10-258

8.44×10-260

0

3.13×10-53

4.85 ×10-52

3.13×10-53

8.84×10-53

1.57×10-23

4.56×10-19

2.87×10-20

8.40×10-20

1.22×10-78

1.08×10-74

4.58×10-76

1.97×10-75

0
0
0
0

0
0
0
0

30 
Best

Worst                        
Mean

Std. Dev.

3.16×10-30

3.58×10-27

8.00×10-28

1.42×10-27

7.33×10-6

9.96×10-6

8.99×10-6

1.00×10-6

8.06×10-6

9.98×10-6

9.20×10-6

8.75×10-7

3.27×10-86

7.61×10-84

1.91×10-84

2.82×10-84

1.53×10-103

1.62×10-92

2.70×10-93

6.60×10-93

1.71×10-10

8.54×10-10

6.02×10-10

2.55×10-10

1.27×10-6

1.02×10-5

5.41×10-6

3.71×10-6

4.65×10-21

9.03×10-20

3.41×1020

2.31×10-20

0 (12)
3.67×10-51

8.10×10-52

1.24×10-51

0 (29)
1.56×10-49

5.20×10-51

2.84×10-50

Table 14: Comparison of results Griewank test function among ten PSOs.

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10 

Best
Worst                        
Mean

Std. Dev.

9.86×10-3

1.50×10-1

5.05×10-2

2.61×10-2

2.46×10-2

2.26×10-1

8.37×10-2

4.47×10-2

7.40×10-3

6.89×10-2

3.41×10-2

1.65×10-2

9.86×10-3

3.20×10-2

2.02×10-2

1.03×10-2

7.40×10-3

1.06×10-1

5.53×10-2

2.28×10-2

2.77×10-10

2.37×10-2

7.98×10-3

7.86×10-3

9.86×10-3

1.25×10-1

3.95×10-2

2.49×10-2

0 (6)
9.95×10-11

1.53×10-11

3.23×10-11

0
0
0
0

0
0
0
0

30 
Best

Worst                        
Mean

Std. Dev.

1.72×10-2

1.35×10-1

7.06×10-2

3.13×10-2

1.72×10-2

1.18×10-1

6.24×10-2

2.39×10-2

9.02×10-6

8.61×10-2

3.35×10-2

2.32×10-2

6.40×10-4

6.23×10-2

2.49×10-2

1.61×10-2

7.40 ×10-3

1.38 ×10-1

7.26×10-2

3.36×10-2

2.55×10-6

4.94×10-2

1.66×10-2

1.38×10-2

9.86×10-3 
1.16×10-1

5.71×10-2

2.64×10-2

0 (3) 
8.00×10-10

6.65×10-11

1.91×10-10

0 (8) 
1.17×10-1

1.52×10-2

2.22×10-2

0
0
0
0

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10 

Best
Worst                        
Mean

Std. Dev.

0
0
0
0

2.33×10-6

1.41×10-1

9.89×10-3

3.46×10-2

5.48×10-6

9.97×10-6

8.52×10-6

1.13×10-6

0 (14)
1.37

1.06×10-1

2.79×10-1

0
0
0
0

0 (5)
4.10×10-6

2.34×10-5

8.15×10-5

2.13×10-14

6.23×10-9

3.98×10-10

1.17×10-9

0
0
0
0

0
0
0
0

0
0
0
0

30 
Best

Worst                        
Mean

Std. Dev.

7.11×10-15

2.25×10-3

9.53×10-4

1.02×10-3

4.21×10-6

1.65×10-2

6.94×10-4

3.07×10-3

6.26×10-6

9.98×10-6

8.80×10-6

8.06×10-6

7.77
1.26×10+1

9.06
1.85

7.11×10-15

1.50
3.20×10-1

6.63×10-1

1.25×10-4

1.96×10-4

1.62×10-4

3.00×10-5

7.11×10-15

3.96×10-09

2.48×10-10

7.66×10-10

0
0
0
0

1.32×10-1

 3.00
1.91
1.38

0
0
0
0

Table 15: Comparison of results on Weierstrass test function among ten PSOs.

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10 

Best
Worst                        
Mean

Std. Dev.

1.51×10-4

2.02×10-3

7.77×10-4

4.10×10-4

3.20×10-4

2.88×10-3

1.36×10-3

6.15×10-4

1.27×10-4

8.27×10-4

3.66×10-4

1.68×10-4

4.19×10-4

3.39×10-3

1.70×10-3

8.36×10-4

1.07×10-4

1.95×10-3

4.75×10-4

3.79×10-4

1.36×10-4

1.00×10-3

5.31×10-4

2.25×10-4

7.65×10-4

6.02×10-3

2.97×10-3

1.40×10-3

3.37×10-4

1.54×10-3

7.05×10-4

2.61×10-4

7.35×10-6

7.36×10-4

1.99×10-4

1.87×10-4

1.67×10-5

7.63×10-4

3.21×10-4

2.57×10-4

30 
Best

Worst                        
Mean

Std. Dev.

1.37×10-2

4.41×10-2

2.68×10-2

1.18×10-2

2.09×10-3

9.71×10-3

6.27×10-3

2.62×10-3

4.00×10-3

6.89×10-3

5.09×10-3

1.17×10-3

3.36×10-3

1.59×10-2

1.01×10-2

4.99×10-3

1.70×10-3

5.37×10-3

3.28×10-3

1.07×10-3

4.02×10-3

5.74×10-3

4.79×10-3

6.35×10-4

9.68×10-3

2.26×10-2

1.44×10-2

4.84×10-3

2.51×10-3

8.45×10-3

5.44×10-3

1.91×10-3

6.05×10-5

4.45×10-4

1.54×10-4

1.10×10-4

2.86×10-5

2.52×10-3

7.78×10-4

7.66×10-4

Table 16: Comparison of results on Quatric test function among ten PSOs.

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10 

Best
Worst                        
Mean

Std. Dev.

0 (3)
3.00

3.67×10-1

7.18×10-1

6.12×10-6

9.00
4.67
2.09

7.72×10-8

3.00
2.00×10-1

7.61×10-1

0 (4)
7.00
3.19
1.67

0 (4)
2.00

4.67×10-1

6.81×10-1

4.65×10-9

2.24
6.52×10-1

7.48×10-1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

30 
Best

Worst                        
Mean

Std. Dev.

7.00
3.90×10+1

1.70×10+1

1.18×10+1

2.30×10+1

7.10×10+1

4.15×10+1

1.92×10+1

4.00
1.90×10+1

1.87×10+1

5.20

6.50×10+1

1.00
7.96×10+1

1.59×10+1

7.00
1.70×10+1

1.08×10+1

4.40

5.62×10+1

7.61×10+1

6.23×10+1

7.21

3.33×10-10

2.04×10-8

5.39×10-9

7.49×10-9

4.80×10-13

7.12×10-12

2.57×10-12

2.61×10-12

2.50×10+1

1.25×10+2

7.52×10+1

3.52×10+1

0
0
0
0

Table 17a: Comparison of results on Non Continues Rastrigin test function among ten PSOs.
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 The convergence curves of Rosenbrock function is shown in 
Figures 4a and 4b). If each dimension of global minimum is situated in 
one region, it is clear that algorithm cannot reach the best solution in 
restricted areas. In order to find global minimum, search area should 
be extended to the entire search space in the second stage. If search 
space is divided into 15 regions, each dimension of global minimums 
of Hartmann1 and Michalewick 2 functions will be placed in different 
regions. The convergence curves of these functions are shown in Figures 
5a and 5b). These figures clearly indicate that global minimum would 
not be found via searching in subspaces. 

Parameters of acceleration coefficients

To access the sensitivity of  1,2δ , different values of 1,2δ  are tested. 
Results presented in Table 6 makes it clear that the interval [0.025, 0.8] 
is suitable. The magnitudes of a1, a2 and a3  are discussed in this section. 
From Tables 7-9, it is found that the best results are achieved when 
parameters  a1, a2 and a3 are set equal to 0.5, 0.8, and 3, respectively.

Numerical Experiments and Discussion
To evaluate the performance of the PPSO, nine famous PSO 

Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
10 
Best
Worst                        
Mean
Std. Dev.

0 (5)
2.98
1.45
8.70×10-1

9.95×10-1

1.29×10+1

5.27
2.88

9.95×10-1

9.95
3.45
1.95

9.95×10-1

8.95
5.49
2.46

0 (5)
3.98
1.72
1.11

0 (4)
9.95×10-1

1.01×10-1

3.03×10-1

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

30 
Best
Worst                        
Mean
Std. Dev.

1.29×10+1

3.68×10+1

2.89×10+1

7.54

4.68×10+1

9.35×10+1

2.59×10+1

1.70×10+1

2.89×10+1

6.17×10+1

4.03×10+1

1.20×10+1

5.17×10+1 

9.95×10+1

6.63×10+1

1.45×10+1

2.09×10+1

3.38×10+1

2.77×10+1

4.30

5.66×10+1

8.51×10+1

7.30×10+1

9.70

2.07×10-8

7.12×10-8

1.46×10-8

1.92×10-8

1.07×10-14

7.66×10-13

2.12×10-13

2.18×10-13

0 (3) 
1.08×10+2

5.00×10+1

2.49×10+1

0
0
0
0

Table 18a: Comparison of results on Rastrigin test function among ten PSOs.

Function Dimension PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
Sphere 10 0 0 0 0 0 0 0 0 100 100

30 0 0 0 0 0 0 0 0 90 90
Rosenbrock 10 0 0 0 0 0 0 0 0 86.7 0

30 0 0 0 0 0 0 0 0 0 0
Quadric 10 0 0 0 0 0 0 0 0 100 100

30 0 0 0 0 0 0 0 0 40 96.7
Griewank 10 0 0 0 0 0 0 0 20 100 100

30 0 0 0 0 0 0 0 10 26.7 100
Weierstrass 10 100 0 0 46.7 100 16.7 0 100 100 100

30 0 0 0 0 0 0 0 100 0 100
Quartic 10 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0
Non Continues 

Rastrigin
10 10 0 0 13.3 13.3 0 100 100 100 100
30 0 0 0 0 0 0 0 0 0 100

Rastrigin 10 16.7 0 0 0 16.7 13.3 100 100 100 100
30 0 0 0 0 0 0 0 0 10 100

Totally winning 10 1 0 0 0 1 0 2 3 6 6
30 0 0 0 0 0 0 0 1 0 4

Table 17b: Successful rates of ten PSOs (problems with 10 and 30 dimensions).

Function PSO-w PSO-cf PSO-cf-local UPSO FDR FIPS CPSO-H CLPSO CPSO-outer PPSO
Beale 100  100 100 100 80 100 100 100 100 100
Bohachevsky1 100 100 100 100 100 100 100 100 100 100
Bohachevsky2 100 100 100 100 100 100 100 100 100 100
Bohachevsky3 100 100 100 100 100 100 100 100 100 100
Booth 100 100 100 100 100 100 100 100 100 100
Branin 100 100 100 100 100 100 100 100 100 100
Easom 100 100 100 100 100 100 100 100 100 100
Hartmann1 100 100 100 100 100 100 100 100 100 100
Hump 100 100 100 100 100 100 100 100 100 100
Matyas 0 100 100 100 100 87.5 100 0 100 100
Michalewics1 100 100 100 100 100 100 100 100 100 100
Michalewics2 90 25 63.33 100 33.33 90 100 100 88.33 100
Needle-in-a-
haystack

6.67 - 60 33.3 40 26.67 20 0 0 100

Totally winning 10 11 11 12 10 10 12 10 11 13

Table 18b: Successful rates of ten PSOs (problems with fixed number of dimensions).
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algorithms are used, as detailed in Table 10. In all of the tests, the 
parameter configurations of these PSO variants are set according to 
their corresponding references, and the algorithm configuration of 
the PPSO is shown in Table 2. For the first eight functions which are 
commonly used in different articles and one function which is randomly 
chosen from the rest of Table 1, the worst, the best, mean and standard 
deviation of fitness values of the best particles found by nine algorithms 
over 30 runs, are listed in Tables 11-19 [20]. Two different dimensions 
are tested (10 and 30 dimensions) for the first eight functions. The 
boldface numbers indicate the best results. The times of reaching global 
optima out of all runs are presented in the brackets. The successful rates 
of ten PSOs are listed in Tables 17a, 17b, 18a and 18b which is defined 
as follows:

100Thesuccessful rate the number of successful runs
the number of all runs 0

 
 (3 )

= ×   (18)

From Tables 11-19, it can be seen that the results of the proposed 
method are superior to other nine algorithms, for example, the results 
of 10-D Sphere and 30-D Greiwank and Rastragin and 10-D and 
30-DRosenbrock.On10-D and 30-DQuatric, the CPSO-outer method 
is slightly better than PPSO; however, PPSO can get better result of 

the best solution. On 30-DQuadric, FDR performs best with high 
optimization robustness; however, PPSO could find global optimum 
with high successful rate. For 10-DSphere and Quadric; however, UPSO 
and FDR perform robust and show good accuracy, PPSO and CPSO-
outer can converge to global optimum with the same robustness. Only 
PPSO and CPSO-outer methods achieved the best results of sphere, 
10-DQuadric, and Greiwank. However, 30-D functions are more 
difficult than 10-D functions; results show that PPSO can perform well 
when dimensions are increased. On 30-D Griewank, Rastragin and 
Non Continues Rastragin, only PPSO could achieve global optimums. 
Although, other algorithms find global optimums on 10-D functions, 
in 30-D cases their performances sharply plummet.

Conclusion

In this paper, PPSO with simple techniques of partitioning search 
space into blocks and use of improved acceleration coefficients is able to 
escape from local minima and converge to the global minima robustly. 
The proposed algorithm contains three stages. Particles are divided 
into smaller groups and search small regions at the first stage. Then, 
particles search all of the search space as the transition stage. Finally, 
based on the results of these two stages, particles continue searching. 
Moreover, PPSO performs well even if dimensions of search space are 
increased; however, the performance of some methods considerably 
drops. In short, PPSO is generally simple, and yields good results in 
comparison with other variants.
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