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Introduction
The cellular development begins with the growth and further 

differentiation of a cell, which are processes that involve differential 
expression of genes, synthesis, and sorting of specific proteins 
redistribution of cellular components and membrane addition, among 
others [1]. In order that these events occur through a synchronized 
and coordinated way, proper coordination between the endosomal 
trafficking machinery is crucial. In general terms, trafficking may be 
summarized in 3 main steps: Endocytosis, sorting, and exocytosis. 
Briefly, the intracellular membrane trafficking begins with endocytosis, 
which consists of the internalization of components within the cell, 
which are positioned inside endosomes (called early endosomes). 
Once there, the destination of this material is classified and sorted, 
which means that it is either returned to the plasma membrane (by 
recycling endosomes) or sent to degradation (by late endosomes 
and subsequently lysosomes). Finally, the externalization of material 
outside of the cell is called exocytosis [1,2].

One of the better characterized proteins linked to vesicular 
trafficking are the Rab-family proteins, which belong to the superfamily 
of the Related Proteins (Ras) GTPases. Rabs are a group of regulatory 
molecules that are in different subsets of membrane domains along the 
secretory and endocytic pathway. In the active state, that is, bound to 
GTP, their function is to recruit endosome membrane-specific effector 
proteins [3-5]. Some of these Rabs have a specific cellular location 
within the different types of endosomes and are used as markers for 
these. For example, Rab5 is commonly used as early endosome marker, 
Rab11 for recycling endosomes and Rab7 for late endosomes, among 
others. Other Rabs are located in the cell membrane and vesicles such 
as Rab8 [6-12]. Some of the regulatory functions described for Rabs 
include the interaction with different effector proteins that select the 
cargo, promote the movement of vesicles to different compartments 
and verify the correct fusion site [13].

Additionally, there are other proteins interacting with endosomes 
and associated with Rabs, linking trafficking with signalling such as 
the Smad Anchor for Receptor Activation (SARA), which represent 
a subpopulation of early endosomes [14]. Also, SARA suppression or 

overexpression modifies the endogenous distribution of specifics Rabs 
like Rab5 and Rab11 and whose contribution to the development of the 
nervous system will be discussed below [15].

Discussion
Participation of Rabs during neuronal development

The participation of proteins associated with membrane traffic 
during the process of formation and extension of neurites has been 
widely studied.

In this sense, experiments addressed in sensory neurons of dorsal 
root ganglion (DRG) shown that Rab7 controls the neurites growth by 
an endosomal trafficking-mediated mechanism involving neurotrophic 
tyrosine kinase receptor A (TrkA) signaling since the inhibition 
of Rab7 results in TrkA accumulation in endosomes [16]. Also, in 
DRGs, it has been reported that trafficking of integrin β1 (membrane 
receptor involved in cell adhesion and recognition) at the surface of 
the membrane during neurites growth, requires the participation of 
Rab11 and its effector Rab coupling protein (RCP). Changes in the 
expression of Rab11 modify the levels of integrin β1 at the surface and, 
as a consequence, alter axonal growth [17].

In hippocampal neurons, Rab5 suppression inhibits the 
morphogenesis of both axon and dendrites, whereas Rab17 suppression 
only affects the dendritogenesis, suggesting that the expression and 
function of Rabs during development is context-dependent [18]. Also, 
it has been recently identified that the guanine nucleotide exchange 
factor for Rab8, GRAB, promotes the transport of vesicles to the axonal 
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membrane by mediating the interaction between Rab11 and Rab8, 
acting as a regulator of axonal growth in hippocampal neurons as well 
as in vivo corticogenesis [19,20]. In cortical neurons, both in vitro and 
in vivo, neuronal development could be regulated by the modulation of 
the protein lemur kinase 1 (LMTK1) expression, a protein that plays a 
role in the recycling of endosomal trafficking and up-regulates Rab11a. 
It has been shown that LMTK1 inhibition increases both the growth 
and branching of the dendrites [21,22].

Finally, it has been shown that neurons lacking SARA (either wild 
type-suppressed or isolated from the knockout mice), develop more 
than one axon, a phenotype that reports the inability to define the 
normal neuronal structure with one single axon, altering the polarity 
process of hippocampal neurons by changing the location of both Rab5 
and Rab11 endosomes [15]. Furthermore, during the development of 
the cortex in vivo, SARA suppression produces a delay on the migration 
of the neurons from the ventricular zones, generating as a consequence 
that developing neurons arrive later to the outer cortical layers [23].

Involvement of Rabs during neurodegenerative disease

Considering the membrane trafficking role during neuronal 
development, a strong emphasis has been done on studying the 
participation of Rabs in pathologies affecting the nervous system.

Several studies associate changes on Rabs expression with 
neurodegenerative disorders. In Alzheimer disease (AD), the 
expressions of Rab4, Rab5, Rab7, and Rab27 are up-regulated [24-26]. 
In this context, high levels of Rab5 enhance the amyloid precursor 
protein (APP) expression, a central protein for the development of this 
disease, reproducing the morphology and endosomal phenotype found 
in AD [27].

Along the same line, the decrease in the number of Rab11-dependent 
synapses (caused by a decrease in Rab11 expression) could explain their 
participation in Alzheimer's, Huntington's and Parkinson's diseases 
[28-31]. In this regard, the loss of specific dendritic spines occurs at sites 
of huntingtin aggregate formation. Rab11 overexpression restores the 
number of spines around the aggregates in hippocampal neurons [32]. 
Moreover, the inhibition of Rab11 decreases the axonal localization of 
BACE (beta-secretase 1), a protein associated with the processing of 
APP; suggesting a relationship between Rab11 and APP dynamics [33]. 
However, a direct relationship between cellular processes alterations 
and cognitive dysfunction has not yet been defined.

Finally, the participation of proteins associated with Rabs in 
neuronal pathologies has also been reported. In this sense, endogenous 
SARA expression is increased in the hippocampus of rats subjected to 
pilocarpine-induced status epilepticus (SE). The SARA suppression by 
lentiviral infection delays the onset of SE through signalling dependent 
on Transforming Growth Factor (TGFβ), suggesting that SARA 
contributes to the development of the SE [34].

Conclusion
The performance of central and peripheral neurons depends on 

proper development. Numerous evidences have shown the importance 
of membrane traffic during development and neuronal specification. 
In this regard, we wonder about the impact of aberrant trafficking 
on the development of both neuronal and non-neuronal pathologies. 
Currently, the biggest challenge in this field is to understand whether 
changes in the normal operation of trafficking are either a cause or a 
consequence for neuronal pathologies development. In this regard, 
many articles support the notion that alterations on endosomal 

trafficking represent an early event at the onset of nerve pathologies 
and treatments aimed at restoring endosomal function can be 
successful therapeutic strategies. However, further research is required 
to discriminate at which level trafficking-mediated events impact on 
physiological and pathological functions of both neural and non-
neural cells.
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