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Introduction
Technological advances have greatly reduced the cost and time 

needed to sequence an individual’s genome (i.e., identify the DNA 
base pairs that constitute an individual’s genome), leading to dramatic 
growth in the amount of genomic data to analyze. Although the 
development of novel sequencing technologies has been prolific, 
the growth in methods to detect associations between phenotypes 
(i.e., physical traits of interest) and locations along the genome, 
more specifically single nucleotide polymorphisms (SNPs), has been 
comparatively limited. Hindrances to methodological development 
include a lack of available computing power to analyze data in a 
feasible time frame (i.e., in a time frame useful to researchers). One 
technique used to speed up computation (i.e. make computation 
more efficient) is parallelization, where multiple tasks are performed 
simultaneously on multiple cores or threads within a machine [1]. 
Even with computational and methodological limitations, analysis of 
genome-wide association study (GWAS) data has led to the inference 
of connections among several phenotypes and SNPs [2,3].

For example, in a two-phase GWAS involving almost 400,000 SNPs 
and 1,363 samples, Sladek and colleagues identified four novel genomic 
locations associated with type 2 diabetes [2]. The study was complicated 
by the suspicion that there might be interactions between genetic and 
environmental risk factors. This GWAS would have been infeasible 
to perform on an individual desktop or laptop computer due to the 
amount of time that would have been required. In this case, researchers 
used a supercomputing facility to perform the data analysis.

Due to the size of GWAS data sets, computational efficiency 
and feasibility are of particular concern. Accordingly, the search for 
quantitative trait loci (i.e., locations along the genome connected 
to a quantitative trait of interest) has relied heavily on methods that 
are computationally feasible for data sets with up to thousands of 
individuals and hundreds of thousands of SNPs. Data sets can include 
samples from individuals with known familial history (pedigree-based 
samples) or individuals unrelated by familial history (population-based 
samples). This editorial focuses on association mapping, or the use of 
population-based samples, to find SNP-phenotype connections [4].

In this text, we briefly review association mapping methods, which 
includes comment on their respective computational abilities. Lastly, 
we discuss potential computational resource development that may 
enhance the feasibility of analyzing data using association mapping 
approaches.

Review
Current association mapping methods have demonstrated 

improved computational efficiency compared to initially-developed 
approaches. Although early methods such as TreeLD [5] were tested 
on fewer than 100 SNPs in no more than 250 individuals, more recent 
methods such as EMMAX can be readily applied to data from tens of 
thousands of individuals and as many as hundreds of thousands of 
SNPs [6]. Some of these more recent approaches are identified below.

Methods differ in their computational abilities due to variation 

in their complexities. Fundamental techniques that analyze SNPs 
marginally are easily parallelized since computations involving a single 
SNP do not affect computations from other SNPs. Those that analyze 
SNPs marginally include Single Marker Analysis [7] and the two-
sample t-test. However, these methods do not allow for the analysis 
of covariates nor the accounting for multiple SNPs simultaneously. 
Approaches that do include regression-based methods such as 
EMMA [8], EMMAX [6], SNPAssoc [9], and PLINK [10]. Several 
implementations of regression-based techniques exist, and include but 
are not limited to SNPAssoc [9], EMMA [8], EMMAX [6], GEMMA 
[11], and pi-MASS [12]. By parallelizing the computations, total 
analysis time can be decreased by a large factor, depending upon the 
number of processors available [13]. 

Other more computationally intensive methods, such as tree-based 
approaches that account for heterogeneous correlation structures, 
could also benefit from parallelization. These techniques include those 
in [5,7,14-19], and whether or not they are already parallelized or 
could be parallelized is highly context and implementation dependent. 
However, these do not allow for external influences on a phenotype 
as do the less computationally intensive methods mentioned 
above. In exchange, tree-based approaches use information about 
evolutionary relationships among copies of particular SNPs to gain 
power in detecting SNP-phenotype associations. Although current 
implementations of some of these approaches are parallelized, speed 
of the other algorithms could be greatly improved by parallelization. 

For a historical illustration of the benefits of parallel computing, we 
consider the 2001 work of Carlborg, Andersson-Eklund and Andersson. 
They studied the computational gain when using a regression-based 
method for quantitative trait mapping [13]. In this study, the relative 
increase in performance (analysis time on one processor divided by 
analysis time for multiple processors) was as large as 7.04 when the 
number of processors increased from 1 to 18. This is only a fraction of 
the number of processors currently available in many supercomputers. 
In addition, this study was performed by parallelizing the processes by 
chromosome rather than by amount of analyses, meaning that a more 
complicated parallelization would show an even larger improvement in 
computational time versus a single processor.

Techniques used in the 2001 study also point to the variation in 
time and knowledge needed to parallelize an analysis on a multi-core 
computer [13]. Tutorials such as that of [20,21] have been developed 
to aid an analyst using R or another coding software in employing 
multiple cores via free, open-source implementations of parallelized 
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data analysis techniques. Although some extra computer code may 
be required to parallelize techniques, running these analysis methods 
without parallelization on simple desktop computers has become 
infeasible due to the growing numbers of SNPs in modern data sets, as 
the analyses would not be completed in any reasonable time frame [22].

Lastly, the cost of parallelization can be highly variable, contingent 
upon type of machine and the number of threads or cores the machine 
contains. In the academic community, channels allowing researchers 
to share supercomputing resources for specific tasks (see those in [22], 
for example) are being developed so that researchers can pool resources 
for GWAS data analysis.

Discussion
In recent years, GWAS analysis methods have been heavily 

criticized, partly due to their lack of power in detecting SNP-phenotype 
associations [23]. However, methods such as those in [15,16] have 
shown promise in improving detection power, subject to increased 
computational cost. Although some of them entail computations that 
are not directly parallelizable, others either use or could benefit from 
parallel computing. This might yield a substantial gain in computation 
speed, even with the added cost of using extra information in the data. 
In addition, computational hardware has been drastically improved 
in recent years [1], meaning that we have the computational power 
necessary to parallelize computations, even in the analysis of large 
genomic data sets.

In addition to gains in computational speed, more effective use of 
computational resources would also enhance the capacity of analysis 
methods to handle more complex data structures. As an example from 
recent history, pleiotropic SNPs (i.e., single SNPs affecting multiple 
traits) associated with human diseases have been reviewed in [24]. 
In addition, cases where multiple SNPs affect a single trait have been 
detected (e.g., see [3]). Also, interactions among genetic and external 
factors are prevalent; for instance, undesirable cardiovascular traits 
such as elevated serum cholesterol can be particularly sensitive to 
an external component such as diet when the genetic component is 
unfavorable. Situations like these give rise to complicated data types 
that will require more sophisticated methodology. Parallel computing 
may be used to offset the computational intensity imposed by such 
complicated data structures. 

Recent advances in computational hardware have been 
advantageous in analyzing large data sets in many fields, including 
genetics, environmental sciences, chemistry, physics, and engineering 
[25]. Association mapping method development would highly benefit 
from parallelizing of computations, due to added computational speed 
in detecting associations among SNPs and phenotypes. Since the 
number of SNPs in each data set has grown so large that detecting SNP-
phenotype associations could take years in the absence of parallelization, 
computational speed increases have become necessary. In fact, some 
recent analyses of large data sets that identified SNP-phenotype links 
would have been infeasible without advanced computational resources 
(e.g., see [2]). Although the growth in available data has not been an 
issue due to reduced data storage costs, supercomputing facilities are 
becoming a necessity for analyzing GWAS data [22]. Computational 
equipment developed so that academic researchers can share these 
resources, along with developing cloud technologies (for example, 
from Google and Amazon), have begun to provide additional 
computing power at reduced cost [22]. The growing accessibility of 
these resources evidences their promise in providing the computational 
power to analyze existing and newly-collected data in the coming 

years. With this computational power, methods that use information 
about the evolutionary history present within each SNP could realize 
improvements in both computational speed and detection power for 
GWAS emerging from complicated, medically-relevant scenarios.
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