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Ozone Preconditioning in Viral Disease

Abstract
Introduction: The purpose of this manuscript is to provide a narrative review of the literature and the basis of ozone therapy to treat viral illnesses including 
COVID-19 therapy.

Methods: We performed a narrative review of 239 relevant publications and present new data not previously published from our group. 

Result: Ozone, a tri-atomic oxygen molecule is a natural substance made by the human white blood cells and metabolized into hydrogen peroxide and many 
lipo-peroxidases. Ozone is one of the most important modulators of the human immune system. Many investigators purport multiple potential mechanisms by 
which ozone treats a variety of viral and other illnesses at the atomic and cellular levels. While these mechanisms are operative, they represent passive events 
resulting from the ozone’s impartation of resonant energy to the human energetics’ fields. We present data demonstrating that the basis of most all human disease 
results from specific organ energetic deficiencies. Ozone may be one of the most potent preconditioning agents yet discovered in the human body. We discuss 
ozone dynamics, the vascular/blood connection, ozone preconditioning, and ozone therapy for specific viral diseases. Our review of the literature uncovered a 
spate of case reports describing beneficial outcomes with ozone treatment in diverse viral syndromes including Human Immunodeficiency Virus (HIV), Human 

ozone treatment. We reviewed our successful use of ozone as an adjuvant and/or primary agent for the successful treatment of COVID-19. We report two cases of 
very successful use of ozone therapy in the maternal-fetal dyads in the severely infected/affected fetuses with CMV; this has never been reported in the medical 
literature. 

Conclusion: Ozone is an effective primary or adjuvant therapy for COVID-19 and for many other viral illnesses. Most all disease processes represent an energy 
deficient state and we have shown that the primary mechanism of ozone is to impart and restore energy deficiencies. 
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Introduction

Reports of disease-modifying properties of ozone in the 1970s spurred 
interest among researchers in further exploring its potential. In the 1980s 
physicians reported beneficial results with ozone in HIV patients. Later 
studies indicated that ozone enhances immune function. The list of 
disorders that responded favorably to ozone continued to grow: autoimmune 
conditions, peripheral vascular disease, fibromyalgia, neurodegenerative 
diseases, renal and gastrointestinal disorders, various cancers, healing 
of wounds and more. Recent studies have found beneficial effects in 
COVID-19 pneumonitis.

Such results seem paradoxical given that ozone is widely regarded 
as a toxic environmental substance. When in excess in atmospheric air it 
produces difficulty in breathing, cough, nasal congestion, chest discomfort 
and, in susceptible individuals, predisposes to asthma attacks, angina 
pectoris and occasional heart attack. A powerful oxidant, ozone impairs 
mitochondrial function resulting in diminished ATP synthesis, production of 
reactive oxygen species and a host of toxic intermediary compounds.

How can ozone on the one hand be a potent toxin and yet, on the other, 
confer beneficial effects in various disease states? Emerging recognition 

of ozone's vast disease-modifying potential is tied into three seemingly 
unrelated discoveries in recent decades. 

The first concerns the recognition of biphasic medicinal effects based 
purely on dosage, known as hormesis, in which substances induce 
paradoxically distinct effects at different concentrations. This dynamic is 
now recognized to be at play many widely employed therapeutic substances.

The second was the chance discovery of the Preconditioning (PC) 
phenomenon by Murry et al. in 1986 who found that application of one 
or more of 'sublethal' amounts of physiologic stressors like ischemia, 
hyperthermia, or toxins induce a powerful counter-response that confers 
body-wide protection to subsequent insults acutely and for up to 72 h 
afterward. The PC phenomenon is now recognized to be the most powerful 
form of endogenous protection ever discovered.

The third discovery was the recognition of an organized blood-borne 
energy field, electromagnetic in nature, generated by the contraction and 
dilation of the heart. The diastolic phase of the cardiac cycle, long held to 
be a period of relaxation, is the primary determinant of cardiac function, 
a period during which electromagnetic energy is infused into the blood 
engendering the active outward movement of the cardiac and arterial 

Papillomavirus (HPV), hepatitis C, herpes zoster, ebola, and SARS-CoV-2. Additionally, we found in vitro studies describing inactivation of herpes and HIV by 

Received: 13-Jan-2022, Manuscript No. VCRH-22-51655; Editor assigned: 17-Jan-2022, PreQC No. VCRH-22-51655(PQ); Reviewed: 27-Jan-2022, QC No. VCRH-22-
51655; Accepted: 31-Jan-2022, Manuscript No. VCRH-22-51655(A); Published: 07-Feb-2022, DOI: 10.37421/2736-657X.06.S1.001.

ISSN: 2736-657X

Review Article



Page 2 of 10

Thorp JA, et al. Virol Curr Res, Volume 6: S1, 2022

reduced. Biochemical analysis suggests that PC slows the rate of ATP 
consumption, anaerobic glycolysis, lactate accumulation, and development 
of tissue acidosis. Surprisingly, cardiovascular functions like endothelial 
dependent vasodilation are preserved and the myocardium becomes 
resistant to potentially lethal arrhythmias. Researchers are at a loss to 
explain the various effects but suggest that PC pulses somehow slow the 
metabolism and diminish energy demand [37-46].

A 1993 study found that preconditioning pulses applied to one vascular 
territory of the heart protected the rest of the heart from prolonged 
arterial occlusion [47]. Several years later another study found reduction 
in myocardial infarct size in rabbits after administration of PC pulses to 
skeletal muscle [48]. Reports soon followed describing protection in organs 
besides the heart after PC pulses in distant vascular territories. Remote PC 
effects involving brain, liver, intestines, kidneys, stomach and lungs were 
described [49-62].

The PC response originates in the cardiovascular system and blood and 
spreads throughout the body. PC pulses applied to any vascular bed confer 
systemic resistance to prolonged ischemia. Remote PC induced by serial 
inflation-deflation of a blood pressure cuff in the extremities is now used 
prior to various surgical procedures to limit operative and postoperative 
injury [63]. Reports suggest beneficial effects are transferable from one 
animal to another by transfusion of blood or bodily fluids [64-66]. It became 
recognized that the PC response could be induced by different means other 
than ischemia: hyperthermia, exercise, cardiac pacing, ethanol, volatile 
anesthetics, and a host of others include ozone [67-85].

A 1996 study ascribing a complex temporal signature to the PC 
phenomenon complicated the picture even further [86]. The initial period 
of heightened resistance to ischemic injury disappears after about 2-3 
hours but then protective effects recur in echo-like fashion about 24 hours 
later and persist for up to 48-72 hours; this is called the second window of 
protection. Researchers remain baffled as to its basis [87, 88]. As effects 
are associated with appearance of different mediator substances in the 
blood it appears to involve gene transcription.

PC is now regarded as the most powerful form of body-wide protection. 
It has been 35 years since its discovery and 10,000's of reports in the 
literature have detailed its various aspects. Molecular biologists have 
identified dozens of potential chemical mediators and various mechanisms-
heat shock proteins, adenosine, various neurotransmitters, erythropoietin, 
nitric oxide, oxygen-derived free radicals, ATP-sensitive potassium 
channels to name a few-but to date no convincing molecular explanation for 
the PC phenomenon has come to light [89-96].This is where recognition of 
the blood-borne energy field provides crucial insight. 

The vascular/blood connection 
Around the time Murry and colleagues stumbled upon preconditioning 

the world of cardiology was in seismic transition. For most of the 20th century 
the heart had been conceived as a mechanical pump which propelled blood 
forward through the arteries during the systolic phase of its cycle. Diastole, 
in turn, was regarded as a period of passive relaxation. In the early 1980s 
reports surfaced describing negative intraventricular pressures in early 
diastole which researchers soon realized must account for diastolic filling 
and the forward movement of blood [97,98].

A 1986 article in Scientific American entitled “The Heart as a Suction 
Pump” advanced a new model of cardiac function [99]. A spate of articles 
followed in support of active dilation and by the late 1980s researchers 
had coined the term ‘diastolic dysfunction’ to designate a growing number 
of disease conditions associated with impaired outward movement of the 
ventricle [100-102]. In the mid-1990s a paper refuted the propulsion theory 
of heart function [103]. By the 1990s imaging studies described spiral 
arterial flow currents which can only be explained on the basis of an energy-
derived suction force [104-107].

Deterioration of the heart-blood energy field forms the basis of numerous 

walls. Impairment of this vital phase of cardiac function, known as diastolic 
dysfunction, is now recognized as a primary feature of a host of acute and 
chronic disease syndromes. 

 In this paper we examine the science behind the ozone phenomenon. 
As we will see ozone activates this energy field in a dose-dependent manner 

Literature Review 

Ozone dynamics 
In the 1880s German pharmacologist Hugo Schulz examined the 

effects of toxic substances on yeast cultures. Using a variety of compounds 
over a broad range of concentrations, and expecting to find progressive 
dose-dependent toxicity, Schulz was taken aback to observe that while all 
agents produced toxic effects at high doses they paradoxically stimulated 
fermentation in yeast cultures at low concentrations [1]. He advanced the 
general axiom that at low doses toxins stimulate functions while at high 
doses they inhibit. Such biphasic effects were widely accepted among 20th 
century homeopathic physicians but roundly rejected in scientific circles.

 In recent decades the biphasic dose-response effect has reemerged 
and become more widely acknowledged in scientific discourse due in 
large part to the writings of toxicologist Edward Calabrese. Beginning 
around 2000 he published a series of papers on hormesis documenting 
the rise, fall and eventual revival of this ubiquitous phenomenon. He cites 
many scientific articles confirming such biphasic dose effects [2-7]. Such 
paradoxical biphasic activity forms the basis of ozone's effects.

Rats exposed to higher concentrations and/or longer exposure periods 
of ozone developed brain dysfunction manifesting in cognitive and motor 
impairment. Other reports found that ozone inhalation induced pathological 
neuronal alterations in the brainstem, basal ganglier and hippocampal 
regions which would seem to explain the various functional impairments 
[8-11]. It is well-established that elevated ozone levels in inspired air are 
associated with increased incidence of ischemic stroke in humans [12-15].

On the other hand, an increasing number of studies support the 
beneficial role of ozone in the treatment of various neurological conditions. 
Ozone has been used for decades in acute and chronic neuropathic pain 
syndromes with reduction in subjective pain scores as well as analgesic 
requirements [16-25]. Sporadic reports suggest its potential to reduce the 
size of the ischemic penumbra in acute stroke and thus limit the severity of 
long-term functional deficits [26-29].

Recent studies point to its clinical utility in neuro-inflammatory 
conditions like multiple sclerosis. In addition to symptomatic improvement 
effects include reduction of oxidation markers, prionflammatory T-cells 
and cytokines and increased anti-oxidant levels, regulatory T-cells and 
anti-inflammatory cytokines [30-35]. As we will see, modulation of the 
inflammatory response plays a major role in the induction of ozone's effects 
including those involving viral pathogens. But through what means are such 
effects mediated? This is where the PC phenomenon comes into play.

Murry et al. [35] designed their PC experiment in order to study 
mechanisms at play in myocardial infarct. They tested whether intermittently 
reopening the coronary arteries to allow for brief return of blood flow altered 
the course of cellular injury [36]. In a control group of dogs a coronary artery 
was clamped for 40 minutes to assess the extent of infarct damage. Another 
group underwent a series of four 5-minute arterial occlusions interrupted by 
5-minute intervals of reperfusion. Afterward the artery was clamped for 40 
minutes. To their complete surprise, animals that received PC pulses had 
only about 25% of damage as the control group. 

The protection afforded by the PC phenomenon has been substantiated 
in many human and animal studies. When the PC sequence is applied prior 
to a prolonged ischemic episode a period of protection ensues that lasts 
about 2-3 hours during which ischemia-mediated damage is markedly 

and asserts its effects via the PC phenomenon.
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acute and chronic diseases. A plethora of reports link diastolic dysfunction 
to coronary artery disease, chronic heart failure and other cardiac 
conditions; diastolic dysfunction is associated with metabolic syndrome 
X, first described in the 1980s, and the cluster of associated disturbances 
including hypertension, insulin resistance, diabetes, and obesity [108,109]. 
Such chronic conditions reflect impaired energy generation in the blood and 
it is on this basis that the effects of ozone PC are mediated.

By the same token the functional disturbances associated with 
COVID-19 infection are mediated in large part by diastolic dysfunction 
and inflammatory changes originating in the cardiovascular system and 
blood. Studies indicate that vascular endothelial cells become infected 
by SARS-CoV-2, and widespread endothelial injury and inflammation is 
present in advanced COVID-19 cases leading some to question whether the 
cardiovascular system plays a primary role in the systemic manifestations 
of the syndrome [110-117]. 

The endothelium forms a vital interface between the blood and all 
bodily tissues, orchestrating a wide range of functions including vasomotor, 
vessel permeability, hemostasis, coagulation and fibrinolysis, all of 
which are energy-driven. Diastolic and endothelial dysfunction is widely 
believed not only to impair organ perfusion but to facilitate the systemic 
pro-thrombotic state resulting in macro and micro thrombi in arteries and 
veins. The ubiquitous distribution of the vascular tree accounts for the 
wide range of symptoms and functional deficits from person to person 
with apparent random involvement of multiple organs like the lungs, heart, 
kidneys and brain [118-129]. Equally, diastolic dysfunction is the common 
link among comorbid states like hypertension, diabetes, chronic heart and 
kidney disease as well as obesity, all of which increase the risk for severe 
COVID-19.

The presence of widespread inflammation involving large and small 
vessels, endothelitis, points to a more than causal relationship between 
runaway inflammation and impaired energy-generation by the vascular 
compartment. Inflammation represents a cellular response to deficient 
energy flow across the cell membrane. Diminished intracellular energy 
induces mitochondrial dysfunction with a shift from aerobic to less efficient 
metabolic pathways that result in generation of Reactive Oxygen Species 
(ROS), accumulation of acidic metabolic by-products, as well as altered 
membrane potentials of intracellular organelles including mitochondria and 
lysosomes [130-136].

Not only does generation of ROS induce structural damage by 
denaturation of proteins but also triggers formation of the cellular stress-
related structure known as the NLRP3 inflammasome which, secondarily, 
is responsible for induction of the pro-inflammatory milieu and the cytokine 
storm that accompanies runaway inflammation in COVID-19.Blood analysis 
of COVID-infected patients has shown increased TNF-α and inflammatory 
interleukins including IL-1α, IL-2, IL-6, and IL-10 which amplify the already 
existing endothelial dysfunction. As others have pointed out, there are 
not one but two storms, the cytokine storm, secondary to widespread 
mitochondrial dysfunction and a primary, equally impactful ROS storm [137-
145].

The global energy deficit has a profound impact on immune cell function. 
In recent decades impaired autophagy, i.e., intracellular digestion, has been 
associated with a large and growing number of acute and chronic disease 
states involving inflammation like autoimmune and infectious diseases 
including COVID-19 [146-158]. Autophagy, which involves intra-lysosomal 
concentration of acid and activation of acid-based enzymes, forms the 
cornerstone of the cellular immune response and the primary defense 
against infection. Scientific articles thus suggest autophagy-enhancing 
substances to treat COVID-19 [159-163]. But autophagy, like maintenance 
of trans-membrane voltage gradients, is an energy-dependent process and 
most symptomatic COVID-19 cases already have impaired mitochondrial 
function [164-170]. Such conjoined cellular energy defects involving 
mitochondria and lysosomes in cells throughout the body, including immune 
cells are, in fact, precisely what drives inflammation [171-182]. 

Ozone preconditioning 
PC comprises two opposing aspects: the immediate consequences 

of the toxic assault and the protective response initiated by the body to 
counteract its noxious influence. A dramatic display of this PC effect is seen 
with ozone, possibly the most powerful PC agent yet discovered.

Erythrocytes (RBCs) are the first to experience the oxidative effects 
of ozone and to mount a response. Upon contact with ozonated tissue 
fluid, RBCs undergo a transient dose-dependent decrease in energy flux, 
estimated to be in the 5-25% range over a period of 15-20 minutes, and 
then respond with a rebound surge of heightened metabolism and energy 
release along with outpouring of antioxidants. Ozone induces up-regulation 
of glycolytic enzymes in RBCs with activation of the Krebs cycle, enhanced 
ATP synthesis, and production of NADPH reducing equivalents which spill 
into the blood and neutralize the oxidizing effects of ozonated water [183-
187].

Heightened energy output by the RBC mass translates directly into 
increased blood flow and energy delivery to peripheral tissues. RBCs possess 
the enzyme Nitric Oxide (NO) synthase and generate large amounts of NO 
in response to oxidative stress that not only increases RBC hardiness and 
deformability but interacts with endothelial-generated NO to maintain active 
vasodilation (a reliable proxy for blood energy content) [188-199]. Ozone-
related oxidative stress triggers activation of Hypoxia Inducible Factor-1 
(HIF-1) which, in turn, augments release of Vascular Endothelial Growth 
Factor (VEGF) and Erythropoietin (EPO) which stimulate angiogenesis, 
blood flow and oxygen delivery to peripheral tissues [200].

The first phase of the PC response, aimed at generating increased 
blood energy levels, mediates subsequent events at the cellular level. 

channel mechanisms and, in short order, enhance mitochondrial function 
and intracellular energy metabolism as well as inducing a plethora of genes 
that actively counteract oxidative stress. The second window of protection is 
driven primarily by events at the cellular level as a result of gene induction. 
Critical response pathways include Nuclear Factor Erythroid 2-related 
Factor 2 (Nrf2) and the Heme Oxygenase-1 Enzyme (HO-1) system.

The powerful antioxidant and anti-inflammatory effects unleashed 
throughout the body by low dose ozone administration are mediated 
through activation of the transcription factor Nrf2. Nrf2, master regulator of 
redox balance, binds to over 200 different genes, known as the Antioxidant 
Response Element (ARE), and effects transcription of cytoprotective 
substances like heat shock proteins, antioxidant and detoxification 
molecules, enzymes involved in synthesis of glutathione, a host of growth 
factors like VEGF and EPO, and more. The Nrf2-driven battery of gene 
products also effects breakdown and/or refolding of misfolded proteins, 
DNA repair, mitochondrial rebuilding, autophagy regulation, as well as 
intracellular metabolism. Impaired Nrf2 function is a hallmark of many 
chronic disease conditions [201-207].

The most striking downstream effect of ozone PC is mitigation of the 

This effect can only be explained on the basis of energy infusion into the cell 
and reversal of mitochondrial dysfunction. Since abnormal inflammasome 
activation is a prominent feature of various chronic conditions like 
Alzheimer's, autoimmune disorders, cardiac and renal disease, as well as 
acute inflammatory syndromes like COVID-19, it has been suggested that 
ozone PC could modulate disease activity in these circumstances as well 
[208-223]. 

Ozone in viral disease 
Our review of the literature uncovered a spate of case reports describing 

beneficial outcomes with ozone treatment in diverse viral syndromes 
including Human Immunodeficiency Virus (HIV), Human Papillomavirus 
(HPV), hepatitis C, herpes zoster, ebola, and SARS-CoV-2 [223-228]. 

Energy currents, carried in the interstitial fluid space, enter cells via ion 

inflammatory response via suppression of NLRP3 inflammasome activity. 

Additionally we found in vitro studies describing inactivation of herpes and 
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HIV by ozone treatment [229-230]. Controlled clinical studies were only 
reported in HIV and SARS-CoV-2.The 1991 HIV study, based on a small 
number of patients, found negligible outcomes. By far largest number of 
reports has emerged during the ongoing COVID-19 pandemic which is why 
it became a main focus of our paper [231-237].

Before describing our experiences several qualifying comments 
regarding ozone PC are necessary. All current medical treatments for viral 
diseases are specific in nature and based on targeting specific structural or 
functional attributes of the viral agent. Ozone therapy, on the other hand, 

cell metabolism and general immune functions like autophagy. For this 
reason we regard ozone as a non-specific function enhancer that can (and 
should) be used alongside other modalities.

Secondly, given that all the various viral syndromes are, in essence, 
primary energy deficiency states, the timing of ozone PC with respect 
to the infective process is a crucial determinant of outcome. In the 1991 
failed HIV ozone study no mention is made as to the disposition of the 
subjects and the duration of their infective process. By the same token, 
several recent controlled clinical studies cited above involved hospitalized 
COVID-19 patients with advanced disease in which only modest beneficial 
outcomes were reported in the ozone groups. Because ozone PC stimulates 
energy production by RBCs it is axiomatic that once cellular metabolism 
deteriorates beyond a certain point beneficial effects cease. It is well known 
that the PC response is blunted or absent in advanced chronic conditions 
like diabetes and the metabolic syndrome.

Another important consideration involves mode of delivery. Various 
avenues of administration have been described: autohemotherapy, which 
involves removing a small aliquot of venous blood, exposing it to ozone, 
and reinjecting it into the vein; rectal or vaginal insufflation of ozone gas; 
direct Intravenous (IV) injection of ozone gas; IV infusion of ozonated 
saline solution; topical administration of ozonated oil preparations. All of the 
various approaches are safe and side effects virtually non-existent. Most 
of our experience has been with IV infusion of ozonated water and topical 
oils [238].

In the spring of 2021 we developed a new technique for infusion of 
ozone into drinking water. With the exception of ozonated oil, all the other 
approaches are hampered by instability and volatility of the preparation and 
must be administered straight away. Using our infusion method we have 
shown stability of drinkable ozonated water up to at least 4 weeks. Two of the 
authors (KT and ET) have used the oral route exclusively since June, 2021, 
and have observed no significant differences compared with the intravenous 
infusion method. We have started small-scale production operation (Soma 
Energetics) for local distribution of water and oil preparations. This method 
allows for daily, non-invasive ozone PC over weeks to months at a small 
fraction of the cost of other methods like autohemotherapy.

Collectively we have treated over 500 COVID-19 patients with 
ozonated-saline in an outpatient setting the majority by one author (DDV). 
Many of these cases had multiple comorbidities and presented with 
moderate-to-advanced disease including respiratory difficulty and low 

oxygen saturations. The first wave (229 patients) was treated between 
March 2020 through May 2021.The second wave (252 patients) was during 
the outbreak of predominantly delta and lambda variants. In both waves the 
preponderance of individuals had improved symptoms within 24-48 hours. 
During the first wave, 38 patients required multiple treatments (299 total 
infusions), 16 had clinical or radiological evidence of COVID-19 pneumonia, 
5 required hospitalization, and 3 died after prolonged hospital stays [239-
242].

The variant wave was more severe with 66 presenting with pneumonia, 
59 required multiple treatments (344 total infusions), 6 were hospitalized, 
and 4 died. In both waves, average duration of symptoms before receiving 
treatment was one week. No complications related to ozone PC occurred. 
Intravenous ozonated-saline combined with other adjuvant therapies proved 
to be an effective treatment to relieve the symptoms, lessen morbidity, and 
shorten the course of the disease in an out-patient setting especially for 
those presenting early in the course of disease. Ozone PC proved to be an 
effective treatment even for those presenting in later stages of the illness 
with compromised lung function. 

Discussion 

Two of the authors used ozone PC to treat severe in-utero 

ozonated water and oil. In the first case (JAT and DDV) there was marked 
thrombocytopenia, anemia and neutropenia with over 2 million viral 
copies/ml of fetal blood. A local maternal fetal medicine specialist had 
recommended termination of pregnancy which the parents declined and, 
instead, pursued ozone PC therapy. The child was born entirely healthy with 
no stigmata of CMV infection. At the time of this report, she is 7 months of 
life, had a zero CMV viral load and continues to be in good health and has 
reached all developmental milestones well in advance.

In the second case (KT and JAT), there was marked fetal intrauterine 
growth restriction with a head circumference at the first percentile; 
termination of gestation had been advised. Within 2 weeks after initiation 
of maternal ozone therapy with oral ozonated water and topical oil over the 
ventral abdomen an explosive acceleration of fetal brain growth occurred. At 
the time of this writing, 3 months later, the infant is healthy and has reached 
all his milestones well in advance. In both cases, ozone therapy was well 
tolerated by the two mother-fetus dyads and coincided with improvement of 
fetal disease. To our knowledge, these cases represent the first reports in 
the medical literature describing ozone PC for intra-uterine CMV disease 
(Reports currently in preparation).

Our final example involves a 56 year-old woman who presented with 
6-week history of severe, disabling shingles (herpes zoster) over her left 
back and ventral chest wall which was refractive to multiple courses of 
antiviral treatment with valacyclovir. Within days of initiating ozonated water 
orally and oil topically over the chest wall pain and inflammation began 
to subside and by 10 days had completely resolved. Neither the oral and 
topical approaches were associated with side effects (Figures 1and 2). 

Figure 1.  A 56 year-old woman who presented with 6-week history of severe, disabling shingles (herpes zoster) over her left back and ventral chest wall which was refractive 
to multiple courses of antiviral treatment with valacyclovir.

Cytomegalovirus (CMV) infections via maternal administration of 

through its stimulation of energy generation via the PC response, augments 
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Conclusion 

In this review we have examined the physiology and mechanism of 
action of ozone PC and highlighted its application in a handful of viral 
diseases. Ozone is a safe, low-cost, widely available and highly effective 
adjunct in the treatment of a multitude of inflammatory conditions. Based on 
the evidence we have presented its implementation into widespread clinical 
practice is warranted and, further, systematic study of its effects in other 
disease complexes recommended.
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