Oxidative Damage is not a Major Contributor to AZT-Induced Mitochondrial Mutations

Adam E Osborne1, J Aquiles Sanchez*, Lawrence J Wangh1, Ravigadevi Sambanthamurthi2 and Hayes KC1

1Department of Biology, Brandeis University, Waltham, MA, 02454, USA
2Malaysian Palm Oil Board, Kajang, Selangor, Malaysia

Abstract

Addition of clinically-relevant levels of 3′-Azido-3′-deoxythymidine (AZT) to cultured HepG2 cells increases the number of reactive radical species (reactive oxygen and nitrogen species [ROS and RNS]) as well as random mutations in mitochondrial DNA (mtDNA). Co-treatment of AZT-exposed cells with palm fruit juice (PFJ) mitigates AZT mutagenesis. These findings suggest that AZT-dependent mtDNA damage resulted from increased reactive species and that PFJ, a known anti-oxidant, mitigated such damage by decreasing the levels of these species. The present report tests the predictions that (1) PFJ mitigates AZT mutagenesis by reducing the burden of AZT-induced reactive species, and (2) AZT-induced mutations in mtDNA should predominantly consist of G → T and C → A substitutions characteristic of DNA oxidative damage. Levels of reactive species and mitochondrial mutagenesis were measured in HepG2 cells exposed to AZT in the presence or absence of PFJ. Controls experiments showed that PFJ in HepG2 cells exhibited strong scavenging activity against hydrogen peroxide-induced ROS, the main reactive species generated by dysfunctional mitochondria. Despite this strong antioxidant activity, PFJ did not decrease AZT-induced reactive species at a concentration that mitigated mtDNA mutations. Consistent with this observation, the spectrum of AZT-induced mutations did not fit the spectrum expected from direct mtDNA oxidative damage. Instead, the spectrum obtained was consistent with the majority of mutations (80%) arising from mitochondrial DNA polymerase errors induced by AZT. These observations suggest that oxidative damage was not the major contributor to AZT-induced mutations.

Keywords: Mitochondria; AZT toxicity; Palm fruit juice; Oil palm phenolics; Antioxidant; Mitochondrial DNA mutations

Introduction

The nucleotide reverse transcriptase inhibitor 3′-Azido-3′-deoxythymidine (AZT, zidovudine) is a key drug used to treat HIV/AIDS in many countries of the developing world. AZT treatment, however, causes both short and long term toxic side effects (skeletal and cardiac myopathies, hyperlactatemia, peripheral neuropathy, increased incidence of diabetes and neurological disorders). These pathologies are consistent with AZT treatment leading to mitochondrial dysfunction and increased oxidative stress [1-3]. AZT treatment also results in the accumulation of random mutations in mitochondrial DNA (mtDNA) [4]. Mitochondrial dysfunction due to these mutations may further increase oxidative damage, initiating a feedback loop of more mutations and further oxidative damage leading to disease.

AZT may cause mitochondrial mutations and dysfunction by increasing the levels of reactive species (reactive oxygen and nitrogen species [ROS and RNS]) within mitochondria [5-9]. These reactive species oxidize DNA leading to the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG), 8-nitro-7,8-dihydro-2′-deoxyguanosine (8-nitro-dG), and other less frequent oxidation products. Mis-pairing of 8-oxo-dG and 8-nitro-dG results in G → T and C → A nucleotide substitutions characteristic of oxidative damage [10-14].

The work presented here tested the hypothesis that oxidative damage triggered by AZT may be a primary cause of AZT-induced mutations in mtDNA. This hypothesis is supported by our observation that addition of palm fruit juice (PFJ) to AZT-treated cultures reduced the number of drug-induced mtDNA mutations. Palm fruit juice is a water soluble by-product of oil extraction from the fruit of the oil palm (Elaeis guineensis) that is rich in antioxidant phenolics and other phytochemicals [15]. In particular, PFJ exhibits a strong scavenging activity for hydrogen peroxide, the main reactive oxygen species produced in excess by defective mitochondria [16]. Similarly, individual antioxidants such as resveratrol, vitamin C, and vitamin E have been shown to mitigate mitochondrial dysfunction due to AZT-induced oxidative stress in vitro and in vivo, although these studies did not measure mtDNA mutations associated with oxidative stress [9,17].

The experiments described here were designed to test two specific hypotheses. First, PFJ mitigation of AZT-induced mutations should correlate with reduced oxidative stress. Second, AZT-generated mutations should include excess G → T and C → A substitutions characteristic of oxidative damage. Despite demonstrating the strong antioxidant activity of PFJ against hydrogen peroxide-induced ROS, neither of the above predictions proved true. Thus, the results question whether oxidative stress is the main driver of AZT-induced mutations.

Materials and Methods

Measurement of reactive species and PFJ antioxidant activity in treated HepG2 cells

Cell culture conditions and preparation of mitochondrial DNA were as previously reported [4]. HepG2 cells, a good model for studying the effects of drugs such as AZT on mtDNA [18], were cultured for thirty days in four separate conditions: (1) 7 μM AZT (Sigma, St. Louis,
MO), (2) 25 µg gallic acid equivalents (GAE)/mL PFJ (a gift from the Malaysian Palm Oil Board), (3) 7 µM AZT and 25 µg GAE/mL PFJ, or (4) culture media alone. After thirty days of treatment, triplicate samples of 2 x 10⁶ cells/mL were placed in a 96-well plate in the above conditions, and cells were allowed to adhere for twenty-four hours prior to staining for reactive species. To confirm the anti-oxidant activity of PFJ in HepG2 cells, a set of wells with untreated or PFJ-treated cells were also incubated for 60 minutes at 37°C in the presence or absence of 1mM H₂O₂, the main radical species generated by mitochondria. To preclude the possibility that PFJ directly inactivated H₂O₂ in the culture media, all extracellular traces of PFJ were removed by multiple washes before addition of H₂O₂. After incubation with H₂O₂, all wells were rinsed with PBS twice to remove H₂O₂. To stain for mitochondrial-specific reactive species (ROS and RNS), cells cultured in the four conditions above and H₂O₂-treated cells were incubated in serum-free Eagle’s Minimum Essential Medium (EMEM, ATCC Manassas, VA) supplemented with 500nM MitoTracker Orange CM-H2TMRos (Life Technologies, Grand Island, NY) for 15 min at 37°C [19]. After staining wells were again rinsed twice with PBS to remove unincorporated dye and read in an Infinite 200 PRO fluorescent plate reader (Tecan, Männedorf, Switzerland) at a 579 nm excitation wavelength and a 599 nm emission wavelength.

Analysis of AZT mutational spectrum

Mitochondrial DNA was isolated as previously described [20]. Briefly, 1000 cells were lysed in 14 µL of Quantilyse [21]. Samples were stored at -20°C. Mutational analysis and DNA sequencing were conducted as described previously [4].

Statistical analysis:

Statistical analysis of the antioxidant activity of PFJ data was carried out using a one-way ANOVA test followed by a Tukey HSD test. The test was performed using 95% significance (p-value <0.05).

Results

Palm Fruit Juice has antioxidant activity against H₂O₂-induced. ROS in HepG2 cells

HepG2 cells were treated with H₂O₂ to test the anti-oxidant activity of PFJ in our system since H₂O₂ is the major source of ROS in dysfunctional mitochondria [22]. Hydrogen peroxide in the absence of PFJ increased reactive species 24-fold. In contrast, PFJ alone did not affect ROS levels. Importantly, H₂O₂ added to cells grown in the presence of PFJ for thirty days failed to elicit an increase in ROS (Table 1). These results demonstrate that one or more components of PFJ are effective inhibitors of H₂O₂-induced ROS in HepG2 cells and are consistent with the reported antioxidant activity of PFJ in chemical assays [16].

Palm fruit juice did not decrease overall reactive species levels in AZT-treated HepG2 cells

The capacity of PFJ to affect AZT-induced increases in reactive species was investigated. In agreement with a previous report [7], HepG2 cells treated with a mutagenic concentration of AZT (7 µM) for thirty days developed higher levels of reactive species compared to untreated cells (Table 1). Palm fruit juice treatment alone, which is not mutagenic [23], did not increase reactive species above background. Despite using a concentration of PFJ that mitigated mtDNA mutations [23], AZT-induced reactive species remained elevated in cells co-treated with AZT and PFJ (Table 1). These results uncouple PFJ mitigation of AZT-induced mtDNA damage from the ability of PFJ to mitigate reactive species generated by AZT.

The spectrum of AZT-induced mutations was inconsistent with oxidative damage

If AZT-induced mtDNA mutations resulted from direct oxidative damage, the mutations should exhibit a preponderance of G → T/C → A transversions [10,11]. Although AZT treatment for 30 days resulted in a wide spectrum of mutations, G → T/C → A transversions characteristic of oxidative DNA damage did not increase above the background observed in untreated cells (Figure 1). The only mutations associated with oxidative damage observed above background were G → C/C → G (20%, Figure 1). The most predominant mutations observed (G → A/C → T and T → C/A → G, 80% collectively) are characteristic of mtDNA polymerase errors [24,25]. These observations suggest that AZT-induced mutations were not likely the result of direct oxidative damage to mtDNA.

Discussion

A major conclusion from this work is that oxidative stress caused by AZT treatment is only a minor contributor to mtDNA mutations. The hypothesis that oxidative damage might be the major driver of AZT-induced mutations was based on observations that (1) AZT treatment induces the formation of reactive species [5-9]; (2) these reactive species cause oxidative DNA damage [10-14]; (3) oxidative DNA damage promotes the formation of characteristic G → T/C → A transition mutations [10,11]; (4) PFJ has strong scavenging activity against hydrogen-peroxide-induced ROS in vitro [16]; and PFJ mitigates AZT-induced mutations [26]. This hypothesis predicts that PFJ mitigation of these mutations should be accompanied by a corresponding decrease in reactive species. However, direct measurements of overall reactive species in HepG2 cells co-treated with PFJ and AZT showed that mitigation of AZT-induced mutations occurred in the absence of a significant decrease in these reactive species, even though PFJ was demonstrated to have strong antioxidant activity against ROS.

The failure of H₂O₂ to induce ROS when cultured with PFJ could simply have been an artefact due to direct inactivation of H₂O₂ by PFJ in the media rather than inhibition of ROS production within the cells. To rule out this possibility, cells were cultured in the presence of PFJ, and all extracellular traces of PFJ were then removed by multiple washes before treating the cells with H₂O₂ (see Materials and Methods). Under these conditions PFJ still prevented formation of H₂O₂-induced ROS. These results are in agreement with the strong hydrogen peroxide

<table>
<thead>
<tr>
<th>HepG2 Treatment</th>
<th>Untreated</th>
<th>H₂O₂</th>
<th>PFJ</th>
<th>H₂O₂+PFJ</th>
<th>AZT</th>
<th>AZT+PFJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normalized Fluorescence</td>
<td>0 ± 3.2a</td>
<td>1417 ± 15.4c</td>
<td>59 ± 42.2c</td>
<td>46 ± 33c</td>
<td>430 ± 170</td>
<td>619 ± 18.4c</td>
</tr>
</tbody>
</table>

This table shows the difference in normalized fluorescence of MitoTracker® Orange CM-H2TMRos dye between H₂O₂ and AZT treated cells. Palm fruit juice significantly lowers ROS in H₂O₂ samples while not lowering reactive species generated from AZT. Fluorescence was normalized by normalizing for the number of cells per well and then subtracting the background fluorescence of the untreated samples. The mean standard deviation is given. Similarly superscripted letters correspond to a significant difference (p<0.05) between treatments by one-way ANOVA followed by a Tukey HSD test.

Table 1: Effects of PFJ treatment on H₂O₂- and AZT-induced reactive species.
In vitro studies with purified in the scarcity of . which may result in mtDNA depletion. Treatment with 7 μM of AZT for 30 days did not generate the oxidative mutations in the AZT mutational spectra. However, previous caused by other less frequent types of oxidative damage (Figure 1). These observations provide independent evidence against such transversion mutations were not increased above background should exhibit a preponderance of G → T/C → A transversions, as vitamin C [28], may have led to the incorrect conclusion that oxidative damage accounts for AZT mutagenesis without altering the total AZT-generated reactive species, oxidative damage must not be a major contributor to AZT mutagenesis. Use of non-discriminating antioxidants, such as vitamin C [28], may have led to the incorrect conclusion that oxidative damage accounts for AZT mutagenesis. Other groups using next-generation sequencing and other methods of mutation detection respond differently to different lesions. In vitro studies with purified enzymes showed that mitochondrial DNA polymerase gamma inserts dideoxyadenosine opposite 8-oxo-dG about 10% of the time [37]. Fourth, oxidative DNA lesions are efficiently repaired by redundant base excision repair and nucleotide excision repair [35,36].

In light of this body of knowledge and the findings reported here a new working hypothesis to explain the mutagenic effects of AZT emerges. Although oxidative damage plays a role in AZT toxicity, our results indicate that oxidative stress is likely a minor contributor to AZT-induced mutations. How might PFJ be mitigating AZT-induced mutagenesis? One possibility is that AZT-induced mutations may result from changes in the fidelity of the mitochondrial polymerase gamma [39]. This hypothesis is consistent with our observation that G → A/C → T mutations characteristic of mitochondrial DNA polymerase errors [23-25] predominated among AZT mutations. Accordingly, PFJ might interact with the polymerase to preserve its fidelity. Alternatively, AZT might also alter the cellular nucleotide pools leading to mitochondrial DNA polymerase errors [40,41]. Palm fruit juice may be preventing these imbalances. Current research is focusing on evaluating the possible mechanism of action of palm fruit juice.

Acknowledgements

This work was funded by the Malaysian Palm Oil Board to K.C.H and L.J.W. The Malaysian Palm Oil Board had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

References


