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gauges the difference between the query sequence's sequence similarity to 
each of its homologs both before and after the introduction of the mutation. 
The BLOSUM62 matrix is used to measure similarity, and it can forecast the 
effects of multiple insertions, deletions, and substitutions of amino acids [1-3].

As an alternative, the Evolutionary Action method uses an equation that 
states that the impact of a mutation is a function of the functional significance 
of the altered residue and of the amino acid similarity of the substitution to 
simulate the genotype-to-phenotype link. The Evolutionary Trace technique 
approximates the functional importance, and substitution matrices that depend 
on the functional significance of the residues and, optionally, on their structural 
characteristics, approximate the similarity of the amino acids. Overall, the 
prevalence of such techniques demonstrates homology's independence from 
other variables and precision in predicting the impact of nsSNVs. Regardless of 
whether it is used alone or in conjunction with structural information, homology 
has consistently been a key factor in nsSNV effect prediction, although its 
predictive power has several drawbacks. Lower prediction accuracy may be 
caused, in example, by the absence of available homologous sequences. 
For instance, the Provean technique typically employs 100–200 homologous 
sequences, but accuracy suffers when this number falls below 50. About 20,000 
proteins that could be used as therapeutic targets were initially revealed by the 
Human Genome Project (HGP), which has deciphered the complete sequence 
of nucleotide base pairs that make up the human genome. Unexpectedly, 
hundreds of thousands of non-coding RNAs that were previously thought of as 
"junk DNA" have been found thanks to later large-scale annotation projects like 
the Encyclopedia of DNA Elements (ENCODE) project. Long non-coding RNAs 
(lncRNAs), which are among them, are extensively transcribed in mammalian 
genomes. LncRNAs can be categorized into five main groups according to 
their locations and properties: intergenic, antisense, sense, intronic, and 
overlapping. About half of these lincRNAs are transcribed from locations within 
10 kb of protein-coding loci, making them more likely to play a role in the cis-
regulatory control of the expression levels of nearby genes. Transcripts that 
are located further away from nearby genes appear to have less chance of 
cis-regulatory control [4,5]. 

Conflict of Interest

None.

References
1. Gerstung, Moritz, Christian Beisel and Niko Beerenwinkel. "Reliable detection of 

subclonal single-nucleotide variants in tumour cell populations." Nature communi 
3 (2012): 1-8.

2. Goya, Rodrigo, Mark G.F. Sun and Janine Senz. "SNVMix: predicting single 
nucleotide variants from next-generation sequencing of tumors." Bioinfo 26 (2010): 
730-736.

3. Capriotti, Emidio, Russ B. Altman and Yana Bromberg. "Collective judgment predicts 
disease-associated single nucleotide variants." BMC Genomics (2013): 1-9.

4. Gehring, Julian S., Bernd Fischer, Michael Lawrence and Wolfgang Huber. "Somatic 
Signatures: inferring mutational signatures from single-nucleotide variants." Bioinfo 
31 (2015): 3673-3675.

5. Bühler, Kora‐Mareen, Elena Giné and Jose Antonio López‐Moreno. "Common single 
nucleotide variants underlying drug addiction: More than a decade of research." 
Addict Biol 20 (2015): 845-871.

Overview of Single Nucleotide Variants
Louis Catherine*

Department of Molecular Medicine, Central Research Institute, USA

*Address for Correspondence: Louis Catherine, Department of Molecular 
Medicine, Central Research Institute, USA, E-mail: cathlouis981@gmail.com

Copyright: © 2022 Catherine L. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Date of Submission: 05-May-2022, Manuscript No: jmgm-22-69481; Editor 
assigned: 07-May -2022, PreQC No. P-69481; Reviewed: 12- May-2022, QC No. 
Q-69481; Revised: 18-May-2022, Manuscript No. R-69481; Published: 24-May-
2022, DOI: 10.37421/1747-0862.2022.16.556

Description

Massive volumes of genomic variant information are produced by whole-
exome sequencing (WES) and genome-wide association studies (GWAS) and 
figuring out which changes cause disease or influence phenotypic features is 
a significant issue. Since exonic non-synonymous single nucleotide variations 
(nsSNVs) account for the majority of known disease-causing mutations, 
most research concentrate on how these nsSNVs alter protein function. The 
impact of nsSNVs on protein function is demonstrated by computational 
studies to reflect sequence homology and structural information, and to be 
predicted by statistical methods, machine learning techniques, or models 
of protein evolution. One of the biggest problems in genetics is figuring out 
how genotype and phenotype are related. Between two unrelated humans, 
there are more than four million DNA variations. Approximately 80% of these 
variances are single nucleotide variations because additions and deletions 
often have a greater impact and are selected against more frequently (SNVs). 
An estimated 81 to 93 percent of human genes have at least one SNV across 
the whole population. Non-synonymous single nucleotide variations (nsSNVs), 
which make up a relatively tiny percentage of variants, account for about 
85% of known illness relationships and are detected in about 10,000 pairs 
of unrelated individuals. The high-yield category of non-synonymous coding 
SNVs has historically received the most attention in techniques for forecasting 
the effects of SNVs. Interest in other types of mutations has increased due to 
the presence of disease-associated synonymous mutations and non-coding 
variations that affect lincRNA, miRNA, and promoters. However, different tools 
will be needed to analyze these types of variations, and these tools are still 
relatively new and untested. Not every nsSNV, though, affects how proteins 
function. Some variations might not alter the protein at all, in which case the 
mutation might not be harmful.

Some of the earliest techniques for anticipating the effects of nsSNVs 
relied only on structure. They attempted to determine the free energy 
change of folding as a result of a mutation as they hypothesized that harmful 
nsSNVs disturb protein folding. This idea is supported by the fact that roughly 
75 percent of amino acid mutations that cause Mendelian disorders also 
influence protein stability. In general, homology-based approaches assume 
that the underrepresented changes in a protein family are harmful and the 
overrepresented ones have a neutral effect on the function of the protein. This 
implies two theories: that all homologs have the same function and that each 
substitution has an independent impact on protein function (no epistasis) (the 
fitness landscape is constant). Most approaches try to minimize this issue by 
optimizing the sequence selection to primarily orthologous proteins, hence 
avoiding changes in the fitness landscape. However, the prediction accuracy 
is greatly impacted by the failure of these hypotheses. Although non-native 
alignments might occasionally increase a method's accuracy, rationally tailoring 
the sequence alignment requires a considerable deal of skill and experience. In 
more recent homology implementations, substitution matrices and homology 
information were coupled. The alignment-based score that Provean employs 
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