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The skeleton’s ability to adapt to altered levels and patterns of 
mechanical loading can be used as a potential target for bone therapy. 
While extensive studies on the effect of exercise and external loading 
show an anabolic effect of mechanical stimulation on weight-bearing 
bones [1,2], there are very few studies on how to use mechanical 
stimulation to increase bone formation in non-weight bearing bones 
such as alveolar bone (part of the upper and lower jaws that house 
the teeth). Resorption of this bone, which commonly occurs in 
response to periodontal disease or trauma, affects millions of people 
and can significantly decrease the long-term prognosis of the teeth 
that it supports. While many surgical and pharmaceutical methods 
to preserve alveolar bone have been suggested, they are all invasive, 
costly and have limited application. Therefore, the need to develop a 
safe mechanical regimen that can stimulate bone formation in alveolar 
bone is obvious. Unfortunately, due to different embryonic origins and 
mechanical environments, strategies that have been used to increase 
bone formation in weight-bearing bones cannot simply be adapted for 
non-weight bearing bones. Weight-bearing bones have endochondral 
origin, which enables growth under heavy mechanical loads—while 
the majority of craniofacial bones are not exposed to heavy loads, and 
form directly from mesenchymal cells (intramembranous origin) [3]. 
In addition, weight-bearing bones are exposed to direct loading, but 
alveolar processes are exposed to indirect loading via teeth and the 
periodontal ligament, which produces a complex pattern of strain 
distribution.

The main limiting factor in developing a mechanical regimen to 
increase bone formation in alveolar bone is our poor understanding of 
how mechanical stimulation can increase bone formation in the first 
place. Previously, it was assumed that the adaptation of bone depends 
on the magnitude of matrix deformation (strain). Therefore, it was 
presumed that to stimulate anabolic reaction in the bone a threshold of 
0.1% strain would have to be exceeded [4].  Strains below this level of 
deformation were considered insufficient stimulation, and not effective 
in mitigating resorption [5]. In support of the assumption that matrix 
deformation is the critical parameter driving bone adaptation, many 
studies have focused on measuring the osteogenic effects of different 
properties of strain, such as strain magnitude [6], strain rate [7], 
electrokinetic streaming currents [8], piezoelectric currents [9], fluid 
shear flow [10] and strain energy density. In all these studies it was 
assumed that a high magnitude of matrix deformation is necessary for 
mechanical stimulation to be osteogenic. Unfortunately, mechanical 
intervention that relies on the application of large loads may be 
infeasible for many clinical situations that involve fragile bones. This 
is also obvious in the case of non-weight bearing bones. First, the 
majority of craniofacial bones are not exposed to heavy forces. Second, 
to be clinically practical these forces should be applied through the 
teeth with a minimum load to minimize tooth damage and discomfort. 
Third, in many clinical scenarios of alveolar bone loss or repair such as 
periodontal disease or early stages of dental implant integration, the 
application of high loads is contraindicated since they facilitate further 
bone loss. Therefore, to take advantage of the osteogenic effect of 
mechanical treatment in alveolar bone, other properties of mechanical 
stimulation must be considered. 

While bone undeniably responds to high level of matrix 
deformation, it has been shown that increasing the frequency of the 
applied load stimulates bone formation in weight-bearing bones with a 
matrix deformation of less than 0.001% strain (11-12). The mechanism 
by which such low-level mechanical signals can cause bone formation is 
not clear. At this strain, the amount of matrix deformation is too small 
to be recognized by cells, therefore the idea that matrix deformation 
or byproducts of matrix deformation, such as streaming potentials, 
fluid drag on cellular processes, or enhanced nutrient transport 
[13-14], would be the sole factors responsible for bone formation is 
highly remote.  These observations suggest that in addition to matrix 
deformation, mechanical stimulation may produce other signals that 
are not related to matrix deformation but are still osteogenic. In fact, it 
is more logical for cells to be sensitive to a direct stimulus that does not 
rely on matrix deformation, since this would reduce the complexity of 
the system and allow cells to respond to the mechanical environment 
without need for damage to the surrounding matrix. Recently, it has 
been suggested that physical acceleration of a cell may present such a 
signal [15].

While cells in different tissues such as bone, cartilage and 
ligament are exposed to different strains, they are all subject to similar 
accelerations, which increases the possibility that acceleration may 
serve as a more generic physical signal to control the adaptive response 
regardless of magnitude of the strain. Indeed, application of small 
oscillatory accelerations, independent of matrix deformation was able 
to enhance bone formation in weight-bearing bones [15]. This property 
of mechanical stimulation can become very useful in the development 
of a mechanical regimen to increase bone formation in non-weight 
bearing bones, since it does not rely on application of high loads.

We recently were able to significantly increase bone formation 
in alveolar bone by applying high frequency (60 Hz) acceleration 
(0.3 g) with almost absent matrix deformation [16]. In our study, the 
osteogenic effect of high frequency accelerations (HFA) exhibited a 
gradient response, suggesting an anabolic effect on adjacent alveolar 
bone that is distant from the point of application. This is clinically very 
significant, because this procedure permits even safer increases in bone 
formation in fragile areas by application of the stimuli on teeth away 
from those areas.

It should be emphasized that higher accelerations are usually 
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accompanied by higher strains, which limits the application of higher 
acceleration as the sole osteogenic source in the mouth. Changes in 
mechanical stimulation frequency are a safe compensation for this 
shortcoming. While the mechanism through which acceleration 
can stimulate bone formation is not clear, it has been suggested that 
oscillation of nuclei in cytoplasm may activate cytoskeleton, which 
may increase osteoblast activity. Indeed, in our experiment we found 
significant increases in osteoblast activity (versus proliferation), as 
demonstrated by the increase in expression of genes that participate 
in different stages of bone formation, from matrix synthesis to 
mineralization. 

Other therapeutic modalities, such as ultrasound [17], electric 
fields [9], and magnetic fields [18] have been suggested to increase bone 
formation. Unfortunately, the cost and complexity of these approaches 
have limited their application to alveolar bone. Our studies suggest a 
simple mechanical recipe that may play a significant role in alveolar 
bone formation and maintenance. Further research in this field would 
help us understand the mechanism of adaptation developed by our 
skeleton in response to mechanical stimulation during evolution, 
and the application of this mechanism for treatment of bone loss and 
injuries in non-weight bearing bones.
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