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Abstract
Heterotopic ossification (HO) is caused by trauma, neurogenic insults, and genetic disorders. Recent detailed 

analyses have revealed a cellular origin for ectopic bone formation as novel mesenchymal progenitors. The 
differentiation of these into osteogenic lineages is induced by a pathological microenvironment in soft tissues outside 
the skeletal tissue, which includes inflammation. Multiple therapeutic strategies for preventing ectopic bone formation 
have recently emerged, including inhibition of bone morphogenetic protein signaling and retinoid signaling. 
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Introduction
Heterotopic ossification (HO) is characterized as the formation of 

ectopic bone in soft tissues outside the skeletal tissue. There are three 
etiologies of HO, namely trauma, neurogenic or surgical insults, and 
genetic disorders [1]. HO is most commonly observed after surgical 
trauma such as total hip arthroplasty (THA) [2], although other affected 
sites include the elbow, knee, shoulder, and ankle [1]. Damage to the 
central nervous system such as spinal and head injuries is responsible 
for neurogenic HO, with the hip joint being the most common site of 
neurogenic ectopic bone formation. 

HO can also be seen in genetic disorders such as Fibrodysplasia 
Ossificans Progressiva (FOP), Albright’s Hereditary Osteodystrophy 
(AHO), and Progressive Osseous Heteroplasia (POH) [3-7]. FOP is 
a debilitating disorder characterized by progressive HO, which has 
congenital malformations of the big toes as an early hallmark [4]. 
Classic FOP is caused by an activating mutation (617G > A; R206H) in 
the Alk2/ACVR1 gene encoding activin receptor-like kinase 2, a bone 
morphogenetic protein (BMP) type I receptor [5]. Atypical FOP patients 
carry various heterozygous missense mutations of Alk2/ACVR1 [5]. 
Although heritable FOP shows transmission in an autosomal dominant 
manner, most cases of FOP are sporadic. In addition to FOP, AHO and 
POH, ectopic calcification in the skeletal muscle is also seen in mdx 
mice, a dystrophin-deficient animal model of Duchenne muscular 
dystrophy [8]. 

Cellular Origin of Ectopic Bone in Soft Tissues
The pathophysiology of HO is not well understood. One theory is 

that HO results from the differentiation of osteogenic progenitors that 
are pathologically induced by local and systemic factors [1]. HO results 
from excessive BMP signaling in the inflammatory environment, 
which, together with increased expression of other osteogenic 
cytokines, can be triggered by injury to the soft tissue. Direct evidence 
for the involvement of enhanced BMP signaling in HO was shown 
by the discovery of a genetic mutation in the Alk2 gene that causes 
FOP. Mutant Alk2 (R206H in classic FOP) is a constitutively active 
form of the BMP receptor, therefore BMP signaling is active even in 
the absence of BMP and increased expression of BMP augments this 
signaling further [4,5]. In addition to augmented BMP signaling, an 
inflammatory milieu is also required for the development of ectopic 

ossification [9]. As traumatic and surgical injuries cause HO, this 
suggests that an inflammatory environment is important in ectopic 
bone formation. 

The cellular origin of osteogenic progenitors is not well 
characterized. However, recent sophisticated analyses have clarified 
the progenitors for ectopic bone in soft tissues. Platelet-derived growth 
factor receptor (PDGFR)α+ mesenchymal progenitor cells, distinct 
from satellite cells, have been shown to be located in mouse and human 
interstitial spaces within skeletal muscle [10,11]. These cells are the 
sources for fat infiltration and fibrosis of skeletal muscle [10,12] and 
undergo osteogenic differentiation in response to BMP stimuli and/or 
osteogenic conditions [10]. 

Interestingly, a lineage-tracing study revealed that vascular smooth 
muscle cells were not involved in any stage of HO [13]. Satellite cells, 
which are myogenic stem cells and MyoD-expressing myogenic 
precursors, show osteogenic responses in culture; however, they play a 
minimal role in the development of HO [11,13]. By contrast, cells that 
expressed Tie2 contributed greatly to osteogenic, chondrogenic, and 
fibroproliferative stages in the heterotropic endochondral anlagen [13]. 
Tie2-expressing progenitor cells respond to inflammatory triggers, 
differentiate into osteogenic lineages, and thereby contribute to HO [13]. 
Moreover, recent investigations revealed that Tie2+PDGFRα+Sca-1+ 
progenitors in skeletal muscle interstitium are involved in HO [14]. 
FACS-isolated PDGFRα+ progenitors showed osteogenic differentiation 
both in vitro and in vivo [11], and have been observed surrounding 
ectopic bone tissues after neurogenic trauma in human HO samples. 
This supports the notion that PDGFRα+ mesenchymal progenitors are 
the origin of ectopic bone formation [11]. 

One previous report documented the conversion of vascular 
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endothelial cells into multipotent stem-like cells in an Alk2 receptor-
dependent manner, followed by differentiation into osteoblasts, 
chondrocytes, and adipocytes [15]. However, this study used Tie2 as 
an endothelial marker. Although this is a good marker for endothelial 
lineages, it is also expressed in other progenitors [14]. Therefore, it is 
likely that Tie2+PDGFRα+Sca-1+ progenitors in interstitium, but not 
endothelial cells, are responsible for ectopic bone formation in vivo 
[11,14]. As Sca-1 is expressed in other cell types, including endothelial 
cells, and there is no human counterpart, PDGFRα+ mesenchymal 
progenitors in skeletal muscle are likely to be one of the best cell sources 
for the major origin of HO both in mouse and human [11].

Prevention and Therapeutic Strategies for Heterotopic 
Ossification

Two common prophylactic therapies for HO are nonsteroidal anti-
inflammatory drugs (NSAIDs) and radiation therapy. NSAIDs, such 
as indomethacin, are effective in the prevention of HO if treatment 
is started early. However, prolonged use of NSAIDs is sometimes 
associated with adverse drug reactions such as gastritis and ulcers, and 
bone nonunion after fracture is also reported [1]. Preoperative radiation 
is effective in the prevention of HO after total hip or knee arthroplasty 
and it is hypothesized that osteogenic progenitors in skeletal muscle are 
radiosensitive in the early phase of HO development [1,2]. Combined 
postoperative radiotherapy and indomethacin are reported to be 
effective at preventing HO after total hip replacement [16].

With regard to therapy for genetic abnormal ectopic bone 
formation, progress has particularly been made in FOP. As indicated 
above, a constitutively active Alk2 mutation is responsible for FOP 
etiology [4,9]. Inflammation is believed to cause tissue damage and 
the activation of mesenchymal progenitors that differentiate to form a 
second skeleton of HO under BMP signaling. Therefore, the surgical 
removal of ectopic bone is not only ineffective for the treatment of 
FOP but may also lead to the formation of additional ectopic bone. A 
selective inhibitor for BMP type I receptor kinase, LDN-193189, was 
proven to be effective at inhibiting BMP signaling and reducing ectopic 
ossification and functional impairment in mice expressing a highly 
constitutively active Alk2 mutation (Q207D). Corticosteroid treatment 
is also effective in this mouse model, indicating the importance of 
suppressing BMP signaling and inflammation for the treatment of FOP 
[9]. 

Retinoid signaling is a strong inhibitor of chondrogenesis that can 
block heterotopic endochondral ossification [17]. Prechondrogenic 
and chondrogenic stages of HO are highly sensitive to retinoid acid 
receptor-γ (RARγ), and the RARγ agonists NRX204647 and CD1530 
are effective at blocking BMP-induced, inflammation-induced, and 
Alk2 mutation-induced HO in animal models [17]. RARγ agonists 
inhibit BMP signaling by promoting the degradation of BMP-regulated 
Smads in a proteosome degradation pathway. They are also effective at 
blocking HO in the chondrogenic phase of bone formation. Since all 
types of HO require cartilaginous scaffolds for bone formation, RARγ 
agonists could be a novel therapeutic option for the treatment of ectopic 
bone. 

The activation of Alk2 leads to the upregulation of the transcription 
factor called inhibitor of differentiation-1 (Id1). Screening of more than 
1000 FDA-approved compounds for the inhibition of Id1 promoter 
activity by mutant Alk2 in FOP recently identified anti-anginal agents 
as potential candidates [18]. Treatment with one of these potential 
drug candidates, perhexiline maleate, a mild blocker of L-type calcium 
channel and a prophylactic antianginal drug, resulted in a 38% 

reduction of HO volume in a BMP-implanted mouse model. Therefore, 
perhexiline and its derivatives could be used as clinically applicable 
drugs for HO in FOP and related disorders.

Several miRNAs are known to be upregulated during osteogenic 
differentiation. OstemiRs include members of the miR-541 and miR-30 
families that regulate osteoblastic and osteocytic differentiation from 
mesenchymal stem cells in a stage-specific manner [19]. Knockdown 
experiments showed that miR-541 is a negative regulator of osteoblastic 
differentiation. By contrast, inhibition of miR-146b-5p and miR-424, 
which are upregulated during osteogenic differentiation from PDGFRα+ 
mesenchymal progenitors, resulted in the suppression of osteocyte 
maturation, suggesting a positive role for these miRNA in osteogenesis 
[11]. The targeting of miRNAs involved in either the promotion or 
inhibition of osteogenesis is one of the novel therapeutic approaches for 
the treatment of ectopic bone in soft tissues [11,19]. These promising 
therapeutic strategies could be applicable not only to FOP, but also to 
other conditions involving ectopic bone formation in soft tissues.
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