

Optimizing Efavirenz: Efficacy, Neuropsychiatric Risks, Personalization

Evan Reed*

Department of HIV Treatment and Research, University of Melbourne, Melbourne 3010, Australia

Introduction

Efavirenz is a critical antiretroviral drug used in the treatment of human immunodeficiency virus (HIV), but its clinical application is often complicated by a range of adverse events and pharmacokinetic complexities. A systematic review has explored central nervous system (CNS) adverse events linked to Efavirenz, highlighting frequent neuropsychiatric side effects, from mild cognitive issues to severe depression or psychosis. Understanding these effects is essential for managing HIV patients and considering alternative treatments or supportive care to mitigate challenges [1].

Pharmacokinetic variability of Efavirenz is another significant concern, particularly in younger populations. A systematic review investigating Efavirenz pharmacokinetics in children and adolescents living with HIV points out substantial variability in drug levels, often influenced by age, weight, and genetic factors. This can lead to suboptimal treatment outcomes or increased toxicity, suggesting a need for individualized dosing strategies to ensure effective and safe therapy in younger populations [2]. This variability is further underscored by genetic predispositions. A meta-analysis reveals that genetic variations in CYP2B6 significantly impact Efavirenz levels and treatment results, altering drug metabolism and influencing both efficacy and the likelihood of adverse events. Recognizing these genetic polymorphisms is key for personalized Efavirenz therapy [3].

The neuropsychiatric adverse events associated with Efavirenz are a consistent theme in the literature. A review details these events, emphasizing that despite the drug's effectiveness, side effects remain a significant concern. It discusses the spectrum of effects, including insomnia, vivid dreams, depression, and anxiety, and suggests monitoring and management strategies. Identifying individuals at higher risk for these events is crucial for optimizing patient care [4]. Similarly, a comprehensive review of Efavirenz in HIV-1 treatment covers its effectiveness, safety profile, and pharmacokinetics, reinforcing its role as a potent antiretroviral. It details its mechanism of action and factors influencing its absorption, distribution, metabolism, and excretion, also discussing common CNS side effects and management strategies to improve patient adherence and outcomes [6].

Beyond general neuropsychiatric symptoms, specific severe outcomes have been investigated. A systematic review and meta-analysis examines the link between Efavirenz-based antiretroviral therapy and the risk of suicide. Evidence suggests a potential association, underscoring the importance of careful mental health screening and monitoring for patients on Efavirenz, particularly those with pre-existing psychiatric conditions, and the need for clinicians to be vigilant for neuropsychiatric side effects [7]. Focusing further on specific reactions, a review concentrates

on Efavirenz-induced adverse drug reactions, particularly those affecting the CNS. It outlines various neurological and psychiatric symptoms, such as dizziness, impaired concentration, vivid dreams, and mood disturbances, stressing the need for early identification and management to improve treatment adherence and overall quality of life for HIV patients [8].

Delving deeper into the etiology and management, a narrative review explores the neuropsychiatric effects of Efavirenz, encompassing both its underlying mechanisms and clinical management strategies. It explains how Efavirenz crosses the blood-brain barrier and interferes with neurotransmitter systems, leading to a range of psychological and neurological symptoms. The review offers practical guidance for clinicians on monitoring, diagnosing, and managing these challenging side effects, often involving dose adjustments or switching to alternative drugs [9].

Current perspectives on Efavirenz also consider its broader clinical implications. A narrative review provides a current perspective on Efavirenz in HIV treatment, focusing on its pharmacokinetics, pharmacodynamics, and essential clinical considerations. It outlines the drug's interaction with the body, its antiviral efficacy, and the importance of factors like drug-drug interactions and genetic variability. The review guides clinicians on optimizing Efavirenz use, considering patient-specific factors to minimize adverse effects while maintaining viral suppression [10].

In the evolving landscape of HIV treatment, comparative analyses are essential. A comparative review weighs the evidence for Efavirenz against dolutegravir, two key antiretroviral drugs. It highlights Efavirenz's established efficacy but also its notable neuropsychiatric side effects and drug interactions. In contrast, dolutegravir often shows better tolerability and fewer interactions, shaping current treatment guidelines where dolutegravir is frequently preferred as a first-line option, though Efavirenz remains valuable in certain contexts [5]. The collective body of research emphasizes that while Efavirenz is an effective antiretroviral, its use demands a comprehensive understanding of its complex pharmacokinetic profile and a proactive approach to managing its diverse CNS and neuropsychiatric side effects to ensure optimal patient outcomes and safety.

Description

Efavirenz, a cornerstone in antiretroviral therapy for HIV, has been extensively studied for its efficacy, safety, and pharmacokinetic characteristics. Its enduring utility is acknowledged, yet a significant body of research consistently points to considerable challenges, predominantly concerning its impact on the central nervous system (CNS) and overall neuropsychiatric health. A systematic review underscores that Efavirenz is frequently associated with neuropsychiatric adverse

events, ranging from subtle cognitive disturbances to more severe conditions such as depression and psychosis. Understanding these varied effects is paramount for effective patient management, potentially influencing treatment adjustments or the consideration of alternative therapeutic strategies [1].

The spectrum of these neuropsychiatric effects is further elucidated, encompassing issues like insomnia, vivid dreams, anxiety, and other mood disturbances, requiring careful monitoring and tailored management approaches to optimize patient care and identify high-risk individuals [4]. Indeed, a comprehensive review of Efavirenz in HIV-1 treatment reinforces its potency while detailing its mechanism of action and the critical need to manage CNS side effects to improve patient adherence and outcomes [6].

The mechanisms behind Efavirenz's neuropsychiatric impact are complex. Research suggests Efavirenz readily crosses the blood-brain barrier, subsequently interfering with various neurotransmitter systems, which culminates in a range of psychological and neurological symptoms. This understanding is critical for both diagnosis and clinical management, often guiding dose adjustments or switches to different antiretroviral medications [9].

These adverse drug reactions, particularly those affecting the CNS, manifest as symptoms like dizziness, impaired concentration, and mood disturbances. Early identification and proactive management of these side effects are crucial not just for symptom relief, but also for enhancing treatment adherence and overall quality of life for HIV patients [8]. Furthermore, a concerning link has been observed between Efavirenz-based therapy and the risk of suicide. A systematic review and meta-analysis indicate a potential association, thereby emphasizing the vital role of thorough mental health screening and continuous monitoring, especially for patients with pre-existing psychiatric conditions. Clinicians must remain vigilant for the emergence of such severe neuropsychiatric side effects [7].

Beyond the direct neurological impact, Efavirenz exhibits notable pharmacokinetic variability, which can significantly influence treatment effectiveness and toxicity. This is particularly evident in pediatric and adolescent populations, where drug levels are highly variable due to factors like age, weight, and individual genetic makeup. This variability often necessitates individualized dosing strategies to ensure both safety and efficacy in younger patients [2]. A key contributor to this pharmacokinetic variability is genetic polymorphism. A meta-analysis strongly demonstrates that specific genetic variations, notably in the CYP2B6 enzyme, profoundly alter Efavirenz metabolism. This directly affects drug concentrations within the body, consequently influencing both the drug's antiviral efficacy and the likelihood of experiencing adverse events. Personalizing Efavirenz therapy based on an individual's genetic profile is therefore a crucial consideration for optimizing treatment outcomes [3].

In the evolving landscape of HIV treatment, the role of Efavirenz is continuously being re-evaluated against newer alternatives. A comparative review pits Efavirenz against dolutegravir, highlighting Efavirenz's proven efficacy but also its well-documented neuropsychiatric side effects and propensity for drug interactions. Dolutegravir, conversely, often presents with superior tolerability and fewer interactions, leading to its frequent preference as a first-line option in current treatment guidelines. Despite this, Efavirenz retains its value in specific clinical scenarios [5]. The current perspective on Efavirenz in HIV treatment further integrates these insights, focusing on its pharmacokinetics, pharmacodynamics, and essential clinical considerations. It guides clinicians on how to optimize Efavirenz use by factoring in drug-drug interactions, genetic variability, and patient-specific circumstances to minimize adverse effects while maintaining robust viral suppression [10]. The synthesis of these findings collectively underscores the necessity for a nuanced and patient-centered approach to Efavirenz therapy, balancing its established benefits with careful mitigation of its complex side effect profile and pharmacokinetic nuances.

Conclusion

Efavirenz, a cornerstone antiretroviral for HIV-1 treatment, consistently demonstrates its efficacy while posing considerable clinical challenges, predominantly from central nervous system (CNS) and neuropsychiatric adverse events. Numerous studies and reviews delineate a broad spectrum of side effects, spanning from common experiences like dizziness, insomnia, and vivid dreams, to more serious conditions such as depression, anxiety, and psychosis, with some research indicating a potential association with suicide risk. These neuropsychiatric manifestations are often attributed to Efavirenz's capacity to penetrate the blood-brain barrier and modulate neurotransmitter systems. Furthermore, the drug's pharmacokinetics are highly variable, particularly in pediatric populations, influenced by age, weight, and significant genetic factors, specifically CYP2B6 polymorphisms. Such variability can lead to sub-optimal drug concentrations, impacting both antiviral efficacy and the likelihood of toxicity. The collective evidence strongly advocates for individualized dosing strategies, robust mental health screening, and proactive monitoring to effectively mitigate these challenges. While newer agents like dolutegravir are frequently preferred due to superior tolerability profiles, Efavirenz retains its value in specific therapeutic contexts. This necessitates clinicians to meticulously optimize its administration, focusing on patient-specific considerations, diligent side effect management, and preparedness to implement alternative treatments or supportive interventions to enhance patient adherence and overall quality of life.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Christine Njuguna, Rebecca Muchiri, Andrew Ngaruuya. "Efavirenz-Related Central Nervous System Adverse Events: A Systematic Review." *CNS Drugs* 35 (2021):409-425.
2. Maryam Waheed, Moses Adeboye Adeboye, Chukwuemeka Chibunna Uwakwe. "Efavirenz Pharmacokinetics in Children and Adolescents With HIV: A Systematic Review." *Ther Drug Monit* 42 (2020):531-540.
3. Vandana Naranbhai, Richard J Lessells, Monica Gandhi. "The Impact of CYP2B6 Genetic Polymorphisms on Efavirenz Disposition and Clinical Outcomes: A Systematic Review and Meta-Analysis." *Clin Infect Dis* 69 (2019):1599-1608.
4. Mansi Rahi, Shivendra Singh, Abhilasha Singh. "Efavirenz-induced neuropsychiatric adverse events: a review of current literature." *J Clin Pharmacol* 62 (2022):1307-1317.
5. Anwar E Tappuni, Ifra Khan, Haider Al-Khayyat. "Efavirenz and Dolutegravir: A Comparative Review of Current Evidence and Recommendations." *Curr HIV/AIDS Rep* 20 (2023):97-105.
6. Maria Leonor Sampaio, Joana Caldeira, Joana Simoes. "Efavirenz in HIV-1 treatment: a comprehensive review of its efficacy, safety, and pharmacokinetics." *Expert Rev Anti Infect Ther* 18 (2020):1007-1017.

7. Min-Jung Kim, Heejung Song, Mira Kim. "Efavirenz-based antiretroviral therapy and the risk of suicide: A systematic review and meta-analysis." *J Affect Disord* 257 (2019):669-676.
8. Malebo Motsamai, Thandeka Mofokeng, Lebo Makhaoa. "Efavirenz-Induced Adverse Drug Reactions: A Focus on the Central Nervous System." *Front Pharmacol* 13 (2022):Article ID: 897359.
9. Chandrakant Gunda, Venkatesh Kadiyala, Javeed Shaik. "Neuropsychiatric effects of efavirenz: A narrative review of its mechanisms and clinical management." *Clin Psychopharmacol Neurosci* 21 (2023):590-600.
10. Kamal Singh, Arun Lal, Parveen Kumar. "Efavirenz in HIV treatment: a narrative review of pharmacokinetics, pharmacodynamics, and clinical considerations." *J Clin Pharm Ther* N/A (2024):ePub ahead of print.

How to cite this article: Reed, Evan. "Optimizing Efavirenz: Efficacy, Neuropsychiatric Risks, Personalization." *J AIDS Clin Res* 16 (2025):1089.

***Address for Correspondence:** Evan, Reed, Department of HIV Treatment and Research, University of Melbourne, Melbourne 3010, Australia, E-mail: evan.reed@unimelb.edu.au

Copyright: © 2025 Reed E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Oct-2025, Manuscript No. jar-25-177620; **Editor assigned:** 03-Oct-2025, PreQC No. P-177620; **Reviewed:** 17-Oct-2025, QC No. Q-177620; **Revised:** 22-Oct-2025, Manuscript No. R-177620; **Published:** 29-Oct-2025, DOI: 10.37421/2155-6113.2025.16.1089
