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Abstract 
This paper proposes the applications of non-traditional 
stochastic optimization techniques as real coded genetic 
algorithm namely ”LXPM” and Differential Evolution(DE) for 
determination of optimal machining conditions for turning 
process on Computer Numerically Controlled (CNC) 
machines. The problem, discussed in the present study 
comprises several nonlinear constraints with an optimum 
criteria based on minimizing total production time that affects 
the production rate as well. The various constraints arise due to 
restricted machining features and are imposed on cutting force, 
power, tool-chip interface temperature and surface. The 
determination of optimal cutting parameters has significant 
importance for economic machining and plays an important 
role in reducing machining errors as tool breakage, tool wear, 
tool chatter etc. as well. The performances of employed 
heuristics are compared with several other optimization 
methods available in literature. The computational results 
demonstrate convincingly, the reliability and efficiency of 
considered methods for predicting optimal machining 
conditions for achieving the desired goal.  
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1.  Introduction 
In today’s competitive and dynamic market environment, 
mostly large or small manufacturing industries, have assigned a 
high priority to economic machining due to sensitiveness of 
machining conditions to production optimization. Being a 
crucial issue, it has always been a field of interest for 
researchers and manufacturers to develop an efficient and 
economic machining. Machining economics has touched new 
horizon, since the advent of Computer Numerically Controlled 
(CNC) machines, which revolutionized the manufacturing 
process by introducing significant changes in manufacturing 
industry. CNC machines, controls all the processes by 
computer programs prepared using different programming 
languages or specific software’s designed for machining 
processes. A CNC machine is mainly designed to meet high 

accuracies and introduces flexibility in machining processes as 
well. Some of the common machine tools that can run on the 
CNC are: Lathe, Milling machines, Drilling Machine etc., used 
for shaping metal parts by removing inevitable waste material. 
It has become more extensive with the wide use of CNC 
machining. High capital investment and operational cost 
involved in manufacturing encourage researchers to optimize 
machining parameters for economic yield.  
Economic machining operations includes  minimization of 
production cost per piece, minimizing production time and 
maximizing production rate  as an economic criteria seeking 
optimal solutions of properly formulated models. At the same 
time several machining constraints must be satisfied, specified 
by machinists. The selection of optimal machining parameters 
is traditionally carried out by process planners based on their 
experience and industrial handbooks. But the parameter values 
suggested, do not considered economic aspect of machining 
and also are not appropriate for CNC machining, due to high 
precision requirement. Therefore an efficient and effective 
optimization algorithm is desirable to obtain optimal conditions 
for CNC (Computer numerically controlled) machines. 
The optimization analysis of machining processes usually 
comprises two steps: the first step involves, formulation of a 
mathematical optimization model, following some economic 
criteria for machining conditions with various realistic 
constraints; the second step is to select an appropriate 
algorithm to seek the optimal or near optimal solutions.  
The present study concerns with analyzing the performance of 
various methods and selecting a suitable one. The objective 
here is to minimize the total production time, under the 
restrictions imposed on cutting force, power, tool-chip 
interface temperature, surface roughness and process 
parameters. The operating parameters to be determined are 
cutting speed, feed rate, depth of cut. 
The organization of the paper is outlined as follows: Section 2 
presents a brief literature review on CNC machining. Section 3 
presents a detailed formulation of objective function and 
constraints along with process parameters of model under 
consideration. In Section 4 the methodologies, employed to 
optimize the process parameters of considered CNC turning 
problem are presented. Experimental results are described and 
discussed in Section 5 and the paper is concluded in Section 6.
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2. Literature Review on CNC Machining 
The research for investigating factors, having considerable 
effect on cutting process and improving its performance has 
continuously received much attention globally. Since the 
advent of CNC machining researchers/manufacturers are 
looking forward for methods that provide high productivity and 
high speed machining.  Consideration of machining parameter 
optimization started out as early as 1907, when [7] 
acknowledged the existence of an optimum cutting speed for 
maximizing material removal rate in single-pass turning 
operations. Research on machining parameter optimization has 
increased since the 1950’s. In 1950, [24] presented a theoretical 
analysis of optimization of machining process and proposed an 
analytical procedure to determine the cutting speed for a single-
pass turning operation with fixed feed rate and depth of cut by 
using two different objectives (i) maximum production rate and 
(ii) minimum machining cost. As an obvious outcome, the 
results obtained using these two objectives are always 
different; therefore in subsequent investigations researchers 
have used an objective of maximum profit rate that produces a 
‘compromise’ result. In a subsequent study [22] two optimum 
criteria as total manufacturing cost and total weighted 
completion time has been considered simultaneously, on a 
single CNC machine and the resulting problem resembles with 
that of job sequencing, on decision-making basis. Initially, 
most of these problems were modeled as unconstrained 
optimization problems however, with the passage of time, 
researchers started concentrating on aspects of machining 
under constrained environment and used different optimization 
techniques for obtaining optimal parameters [4], [8], [10],[11]. 
So far, machining optimization problems have been discussed 
by many researchers using conventional techniques like 
Geometric programming [2], [4], convex programming [8] and 
Nelder-Mead simplex search method [10], [11]. Conventional 
Optimization techniques such as Nelder Mead simplex  method 
and boundary search procedure were used by [18] and a 
comparison was made with stochastic optimization techniques 
like Genetic Algorithms and Simulated Annealing that 
concluded that all methods produces almost equivalent results 
on quality and feasibility basis. Although single pass turning is 
much cheaper and safer than multipass turning, but high quality 
demands led researchers to analyze multipass turning 
operations using  various deterministic or heuristic mehods 
[17],[23]. A review of artificial intelligence techniques for 
CNC machining parameter optimization in manufacturing 
industry was presented by [15] for providing a better 
understanding of these techniques in machining control. 
Recently a study on manufacturing of freeform surfaces or 
sculptured surfaces using CNC machines has been performed 
in [1], which primarily focuses on three aspects in freeform 
surface machining: tool path generation, tool orientation 
identification, and tool geometry selection. A standard 
optimization technique using genetic algorithm was developed 
by [19] to solve different machining optimization problems 
such as turning, face milling and grinding [20]. Recently 
Particle Swarm Optimization has been applied for CNC turning 
operation problem in [13] which concluded that PSO performs 
better than other conventional and non conventional methods.  
The present study is mainly focused on optimization of process 
parameters of CNC turning problem considering minimization 
of total production time as the objective function with 
constraints due to cutting force, surface finish, temperature and 
cutting power. Feed rate and cutting speed are considered as 
process parameters with specified ranges.  

Here we have applied LXPM [12] ( a real coded GA) and DE 
for solving the constrained problem of optimizing the process 
parameters of CNC turning problem. 

 
3. Machining optimization model 
 Machining process is basically a manufacturing process for 
shaping of metal parts by removing unwanted material. During 
machining, one should satisfy given quality specifications as 
accuracy, surface finish and surface integrity with an objective 
of minimum production or machining time. The resulting 
mathematical models for obtaining optimal combination of 
machining parameters including cutting speed, feed rate and 
depth of cut, subject to various constraints are nonlinear and 
non-convex in nature. In the present study model proposed by 
[10], [11] is adopted and analyzed. 
 
3.1 Objective function 
When developing optimization models, objective functions are 
determined by optimization criteria. Here in present study, the 
minimum production time, which is the sum of different 
processing time such as machining time, tool changing time, 
quick return time and work piece handling time, is adopted as 
optimization criteria. The objective function is defined as [11], 
[12]: 

                                    
zttTtttT hrmcsmu +++= )/(                                    

Where cutting time per pass is   

(tm) = 
Vf

DL
1000
π  

 Taylor’s tool life equation is given by 
KTdocfV aaa =321  

This equation is valid over a region of speed and feed for 
which tool life (T) is obtained. The notations used in equation 
(1) are described below. 

   Tu = Total production time 
   tcs =  Tool changing time 
             (min/edge) 
   tr = Quick return time(min/pass) 
   th = Loading and unloading time (min/pass) 
 

3.1   Process parameters 
Feed Rate: The maximum allowable feed has a pronounced 
effect on both the optimum spindle speed and production rate. 
Feed changes have a more significant impact on tool life than 
depth of cut changes. The system energy requirement reduces 
with feed, since the optimum speed becomes lower. Therefore, 
the largest possible feed consistent with the allowable machine 
power and surface finish is desirable, in order for a machine to 
be fully used. It is often possible to obtain much higher metal 
removal rates without reducing tool life by increasing the feed 
and decreasing the speed. In general, the maximum feed in a 
roughing operation is limited by the force that the cutting tool, 
machine tool, work piece and fixture are able to withstand. The 
maximum feed in a finish operation is limited by the surface 
finish requirement and can often be predicted to a certain 
degree, based on the surface finish ad tool nose radius.  
Cutting Speed: Cutting speed is a vital component of tool life 
equation. When compared with depth of cut and feed, the 
cutting speed has only a secondary effect on chip breaking, 
when it varies in the conventional speed range. There are 
certain combinations of speed, feed and depth of cut which are 
preferred for easy chip removal which are mainly dependent on 
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the type of tool and work piece material. Charts providing the 
feasible region for chip breaking as a function of feed versus 
depth of cut are sometimes available from the tool 
manufacturers for a specific insert (or) tool, and can be 
incorporated in the optimization systems. 

 
3.2   Constraints 
During machining, some constraints are imposed on machining 
processes and parameters, which effect the optimal selection of 
machining conditions and therefore need to be handled 
carefully while optimizing the machining model. 
The parameters depth of cut, feed rate and cutting speed are 
bounded by upper and lower limits, specified by machinist or 
tool maker. These bounds are defined as: 

(i) maxmin docdocdoc ≤≤  

(ii)  maxmin fff ≤≤  

(iii) maxmin VVV ≤≤  
 

Other then bounding machining parameters, some constraints 
are imposed on required machining features. The relative 
forces as cutting force, thrust force and radial force, in a 
turning operation are important in the design of machine tools. 
The machine tool and its components must be able to withstand 
these forces without causing significant deflections, vibrations, 
or chatter during the operation. The cutting force constraint is 
used to prevent the tool chatter and to limit the deflection of 
work piece/cutting tool that results in dimensional error. The 
cutting force, F, should be less than the max specified limit 
Fmax. The empirical relation for cutting force is given by:  
     

max
75.0725.010133.0844 FdocfVF ≤= −

 
 
During Machining, the cutting power, P, should not exceed the 
maximum allowable power (Pmax) of machining tool. The 
constraint for cutting power is expressed as:   
 
      max

75.078.091.00373.0 PdocfVP ≤=  
 
The tool life is difficult to predict and is strongly affected by 
the chip-tool interface temperature. The hardness and the 
sharpness of the tool decrease, if the temperature generated at 
the chip tool interface, exceeds the available limit and the tool 
cannot be used for cutting anymore. The constraint can be 
expressed as:  
  

   max
105.02.04.096.74 θ≤docfV  

 
During finishing, the surface roughness, R, must not be greater 
than the specified value of surface roughness ( Rmax). The 
surface roughness constraint follows the following relation                        
 
       max

25.0004.152.1785.14 RdocfV ≤−                                                     
 
The notations and symbols used in mathematical formulation 
of considered machining model are defined in Table 1, along 
with the required data for optimizing machining conditions of 
considered model. 
 
4. Methodology: 
 In the present study two non traditional methods; a real coded 
GA, namely ”LXPM” and Differential Evolution(DE), a 

recently developed population based optimization technique, 
are considered for determining optimal conditions for CNC 
turning process. Both the methods are discussed in detail in this 
section. 
 
4.1 Genetic Algorithms 
Genetic Algorithms, introduced by [9], are a family of 
population based search heuristics, inspired by Darwin’s 
principal of “Survival of fittest”. Genetic algorithms are often 
viewed as function optimizers, although the range of problems 
to which genetic algorithms have been applied is extremely 
wide. An implementation of genetic algorithms begins with a 
population of random solutions called chromosomes, then each 
chromosome is individually evaluated and reproduction is 
carried out in such a way that those chromosomes which 
represents better solution to the target problem are given more 
chances to “reproduce” than those chromosomes which are 
poorer solutions. The goodness of a solution is typically 
defined with respect to the current population.  
Genetic Algorithms starts with the encoding of variables, 
usually binary encoding is used in GA to encode solutions in 
earlier implementations [5], [9]. The performance of  binary 
GA’s are found to be satisfactory on small and moderate size 
problems, requiring less precision in the solution but in case of 
high dimensional problems in which higher degree of precision 
is desired, binary GA’s require huge computational time and 
memory [6]. To overcome the shortcomings of binary coded 
GA’s, real coded GA’s came into existence, in which decision 
variables are encoded as real numbers. It has now been 
established that real coded GA’s are superior to binary coded 
GA’s for continuous optimization problems [3].  
  
4.1.1 LXPM: A real coded GA 
LXPM [12] is a real coded GA which uses Laplace Probability 
Distribution in the crossover phase (the crossover operator is 
termed as Laplace crossover) and uses exponential distribution 
during the mutation phase, with mutation operator being named 
as ‘power mutation’. These two operators are defined as 
follows.  

4.1.1.1 Laplace crossover 
Let x1 = (x1

1, x2
1, x3

1… xn
1) and x2 = (x1

2, x2
2, x3

2,…xn
2) be two 

parents (known individuals) then the two offspring y1 =  (y1
1, 

y2
1, y3

1,……….., yn
1) and y2 = (y1

2, y2
2, y3

2,……….., yn
2) are 

generated as follows: 
First, uniform random numbers ui, ri ∈ [0,1] are generated. 
Then a random number βi is generated satisfying the Laplace 
distribution, as under: 

⎩
⎨
⎧

>+
≤−

=
,2/1),log(
;2/1),log(

ii

ii
i ruba

ruba
β  

Where a is a location parameter and b>0 is scaling parameter. 
With smaller values of b, offsprings are likely to be produced 
nearer to parents and for larger values of b, offsprings are 
expected to be produced far from parents. Having computed βi, 
the two offsprings are obtained as under 
 

2111
iiiii xxxy −+= β      2122

iiiii xxxy −+= β                        

Also one important thing to be noticed here is that difference of 
above two offspring equations gives: 

 
21
ii yy − = 21

ii xx −  
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Which defines the parent centric nature of this operator i.e. 
spreading of offspring is proportional to the spread of parents. 
 
4.1.1.2 Power mutation 
Let x  be a parent solution then a mutated solution x is created 
in the following manner. First, a uniform random number t∈[0, 
1] and a random number  s which follows the power distribution 
(based on exponential distribution), s = (s1)p, where s1 is a 
uniform random number between 0 and 1, are created, here p is 
called the index of mutation. It governs the strength of 
perturbation of power mutation. Having determined s a mutated 
solution is created as: 

⎪⎩

⎪
⎨
⎧

≥−+

<−−
=

.),(
;),(

rtxxsx
rtxxsx

x
u

l

 

Where, 
xx

xxt u

l

−
−

= and xl, xu being the lower and upper bounds 

on the value of the decision variable and r a uniformly 
distributed random number between 0 and 1. 

For selection process LXPM uses Tournament 
Selection. The other parameters are set to be as: 

a) Population (Np) = D*10 
b) Generation = 200 
c) Run= 100  
d) Crossover rate (CR) = varies from 0.86 to 0.9 
e) Mutation Rate (Pm) = varies from 0.006 to 0.06 

 
Constraint handling: In LXPM parameter free, penalty 
function approach based on feasibility approach proposed by 
Deb [14] is used. Fitness value, )( iXfitness  of an individual 

iX  is evaluated using the following relation 

⎪
⎩

⎪
⎨

⎧

∑
=

Φ+
=

otherwise
m

j iXjworstf

feasibleisXifiXf i

iXitnessf
,

1
)(

),(

)(

 

Where, fworst is the objective function value of the worst feasible 
solution currently available in the population. Thus, the fitness 
of an infeasible solution not only depends on the amount of the 
constraint violation, but also on the population of solutions at 
hand. However, the fitness of a feasible solution is always fixed 
and is equal to its objective function value. ( )jj xΦ  refers to 
value of the left hand side of the inequality constraint (equality 
constraints are transformed into inequality constraints using a 
tolerance). If there are no feasible solutions in the population 
also, then fworst   is set zero. 
The Algorithm for LXPM is given in the box shown: 

 
4.2 Differential evolution 
Differential Evolution (DE) is a recently developed stochastic, 
population based algorithm, developed by Storn and Price in 
1995 [21]. It shares many similarities with other Evolutionary 
Algorithms (EA) on the basis of operators employed to update 
population from one generation to next. Like EA, the 
optimization process in DE is also achieved by applying 
crossover, mutation and selection operators. However, DE 
differs from other evolutionary algorithms quite significantly on 
the working of these operators, particularly the mutation 
operator. These operators are defined in the following 
subsections. 
 

4.2.1 Mutation   
The mutation operator in DE produces a trial vector 
corresponding to each individual of the current population by 
mutating a target vector with a weighted differential. This trial 
vector is then used by crossover operator to produce offspring. 
The trial vector ui(t), corresponding to the target vector Xi(t), is 
generated, as follows; 
Select a target vector

1iX , from the population, such that i≠i1. 

Then, randomly select two individuals, 
2iX and 

3iX from the 

population such that  i ≠ i1 ≠ i2 ≠ i3 and i2,i3 ~U(1, ns). Using 
these individuals, the trial vector is calculated by perturbing the 
target vector as follows: 
           ))()(()()(

321
tXtXtXtu iiii −+= β  

Where β∈(0, i+) is the scale factor which controls the 
amplification of the differential variation, ))()((

32
tXtX ii −

. The 

smaller value of β leads to smaller step sizes that increases the 
computational time of algorithm, on the other hand the larger 
value of β provides faster convergence but may result in 
premature convergence. Therefore an appropriate value of β 
should be chosen to maintain exploration-exploitation trade off.  
 
4.2.2 Crossover  
The Crossover operator, combines the trial vector ui(t) and the 
parent vector  Xi(t), to produce offspring, using the following 
rule 

⎪⎩

⎪
⎨
⎧

≠>

=≤
=

)()()(

)()()(
)('

irnbrjorCRjrandbiftX

irnbrjorCRjrandbiftu
tX

ji

ji
ji

 

Where, randb(j) ∈[0,1] is the jth evaluation of random number 
generator, rnbr(i) is a randomly chosen index ∈{1,2,……d}, 
which ensures that  offspring, X’i(t)  has at least one component 
from trial vector ui(t). CR is the crossover constant to be 
determined by the user. 

LXPM Algorithm: 
 

Step 1 (Initialization): 
• Initialize population;  
• Set Generation=0; 

Step 2(Evaluation): Evaluate the fitness for each  
          individual 

Step 3(Termination check): Check the termination  
         criteria, set to Maximum number of  
         generations. 

If satisfied stop; else goto 4. 
Step 4 (GA Operations) 

• Select individuals according to Tournament 
selection to build a mating pool  

• Apply Laplace Crossover to the population 
in mating pool with given crossover 
probability  

• Apply Power Mutation to the current 
population with given mutation probability 

Step 5 (Replacement): Replace the old population 
 with new population while retaining the 
 best individual for next generation  

Step 6 
• Evaluate the best fitness and find optimal 

individual 
• Increment generation; go to step 3. 
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4.3.3 Selection  
Selection operator decides which individual should be 
forwarded to next generation, the offspring X’i(t)  is compared 
to the target vector Xi(t) using the greedy criterion. If the vector 
X’i(t) has better fitness value than target vector Xi(t), it will 
replace the target vector in next generation, otherwise the target 
vector retains its place for at least one more generation. By 
comparing each offspring with its target vector from which it 
inherits parameters, DE strongly integrates recombination and 
selection in comparison to other EAs: 

⎪⎩

⎪
⎨
⎧ ≤

=+
otherwisetX

tXftXfiftXtX
i

iii
i )(

))(())(()()1(
''  

Once the new population is installed, the process of mutation, 
recombination and selection is repeated until the optimum is 
located, or a pre specified termination criterion is satisfied. 
The Algorithm for DE is given as follows: 

 
In the present study, the standard DE version [16], denoted by 
DE/rand/1/bin, is used. The parameter setting of DE for 
solving the considered CNC model is as follows: 

a) Population (Np) = D*10 
b) Generation =200 
c) Run= 100 
d) Scaling factor (β) = 0.5 
e) Crossover rate (CR) = 0.8 

 
Constraint Handling: The constraints are dealt by using penalty 
method. The penalty parameter is set to 103 for each constraint. 
 
5. Computational results and discussion 
In this section we discuss the performance evaluation of LXPM 
and DE vis-a-vis other methods such Boundary Search 
Procedure (BSP), Nelder-Mead Simplex Method (NMS), 
Binary GA, Simulated Annealing (SA) and Particle Swarm 
Optimization (PSO). The optimization process using LXPM 

and DE is performed on a Celeron PC with 1.4 GHz, 1.256 GB 
RAM implementing in VC++.  
Optimal cutting parameters as feed rate, cutting speed and the 
corresponding total production time, obtained using LXPM and 
DE for different values of depth of cut are shown in Table 2.  
An analysis for LXPM and DE on the basis of different aspects 
as mean objective function value, standard deviation, average 
number of function evaluations and average computational 
time for different values of depth of cut over 100 simulations 
are quoted in Table 3. Here average function evaluations of 
successful runs has been calculated, where a run is considered 
successful if 99% of the obtained global minimum is reached.  
The results in Table 3, shows that LXPM performs better than 
DE on different performance aspects considered.  
The performance evaluation of different algorithms on the 
basis of total production time, taking BSP as reference 
algorithm is presented in Table 4. From this Table it can be 
observed that LXPM, PSO and DE perform better than other 
algorithms on the considered model. Results quoted in Table 4 
also predicts that for different values of depth of cut, LXPM 
gives significant improvement over Binary GA and other 
methods such as NMS, BSP, GA and SA. On the other hand 
DE also produces results, better than BSP, NMS, GA, and SA 
and produces approximately similar results as that of LXPM 
and PSO.   
Fig.1 shows the comparison of performance of all algorithms 
for different values of depth of cut. From this Fig it can be 
observed that LXPM, PSO and DE perform better in compared 
to other algorithms such as NMS, BSP, GA, SA.  
Fig.2 illustrates how total production time varies generation 
wise for LXPM for different values of depth of cut, which 
shows that for all cases the considered algorithm converges in 
about 100 generation. 

 
6. Conclusion  
Optimizing machining parameters for different processes is 
intended to improve the machining efficiencies by reducing the 
cost and time involved in manufacturing processes as per 
today’s economic need. In this study, we dealt with 
controllable processing times where processing time decisions 
are taken over the constrained machining environment that 
affects the machining performance and product quality. A  real 
coded GA called LXPM and Differential Evolution (DE) are 
employed for optimizing machining parameters of CNC 
turning process. LXPM uses Laplace crossover and power 
mutation as evolutionary operators, while DE uses random 
mutation strategy with binomial crossover operator. The 
performance of both the algorithms is compared with several 
other optimization algorithms like PSO, Binary GA, SA, NMS, 
and BSP. The discussion of results shows that both LXPM and 
DE performed better than Binary GA, NMS, SA, and BSP. 
However, if LXPM and DE are compared to each other than it 
can be observed that LXPM performed better than DE. This is 
probably due to the fact that in the present study the basic 
version of DE has been used. Advanced versions of DE may 
give a better performance. 
At the present stage it may be concluded that both LXPM and 
DE are efficient and reliable algorithms that can be applied to 
optimize parameters of CNC turning processes for the 
considered model.  
 
Acknowledgement: The first author acknowledges the 
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DE Algorithm  
 
Step 1. Initialization: 

• Set the generation number G = 0 
• Randomly initialize a population of NP 

individuals . 
Step 2. DE operations: 
  WHILE the stopping criterion is not satisfied 
   Do 

   For i = 1to NP   //do sequentially for each   
                                     individual  
       Step 2.1 Mutation Step 

  Generate a donor vector corresponding to 
the i-th target vector using mutation 
schemes  

       Step 2.2 Crossover Step 
Generate a trial vector for the i-th target 
 vector through binomial crossover  

       Step 2.3 Selection Step 
                Evaluate the trial vector and target   

  vector to compare the best one to 
                move to next generation 
       End For 

   Step 2.4 Increase the Generation Count 
                  G = G +1 
END WHILE 
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Tables and Figures 
 

Table 1: Symbols and notations used in mathematical model 
 

Symbol                                 Significance                                             Numerical value 
       D                     diameter of the workpiece (mm)                                          152 
       L                      length of the workpiece (mm)                                              203 
       V                     cutting speed (m/min)                                                             - 

           Vmin,                 minimum allowable cutting speed                                        30 
           Vmax                  maximum allowable cutting speed                                                    200       

       f                       feed rate (mm/rev)                                                                   -      
       fmin,                  minimum allowable feed rate                                              0.254  
       fmax                   maximum. allowable feed rate                                            0.762       
       Ra                     surface roughness (µm)                                                        - 
       Rmax                 max. surface roughness of rough and finished cut                50 
       Pmax                  max. power of  the machine (kW)                                          5                     
       Fmax                  max. cutting force (N)                                                          900 
       Өmax                 max. temperature of tool workpiece interface (°C)              550 
       doc                   depth of cut (mm)                                                                   -              
       docmin,              minimum allowable depth of cut (finish)                              2.0 
       docmax                        maximum. allowable depth of cut (finish)                            5.0      
       T                       tool life (min) 
       tm                      machining time (min)                                                        
       tcs                      tool change time (min/edge)                                                  0.5 
       th                       loading and unloading time (min/pass)                                 1.5 
       tr                       quick return time (min/pass)                                                  0.13 
       Tu                      total production time (min)                                                      - 
       C0                     operating cost ( Rs /piece)                                                       3.5 
       Ct                      tool cost per cutting edge (Rs /edge)                                      17.5 
       CT                     total production cost (Rs /edge)                                             - 
      a1, a2, a3, K    constants used in tool life equation                                  0.29 ; 0.35 ;  
                                                                                                                        0.25; 193.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: optimal parameter values obtained using LXPM and DE for different values of depth of cut 
 
                         LXPM 

 
                             DE 

 
 
Depth  of  
   cut (d) 

  
V*(m/min) 

 
f*(mm/rev) 

 
    Tu 

 
V*(m/min) 

 
f*(mm/rev) 

 
 Tu 

         
         2.0 

 
139.26 

0.762  
  2.78 

 
 139.26 

 
     0.761 

 
2.77 

        
        2.5 

 
129.07 

 
0.762 

 
  2.87 

 
129.07 

 
     0.761 

 
2.87 

  
        3.0 

 
122.72 

 
0.686 

 
  3.06 

 
121.56 

 
     0.685 

 
 3.06 

 
        3.5 

 
122.43 

 
0.585 

 
  3.30 

 
122.61 

 
     0.585 

 
3.31 

 
         4.0 

 
134.54 

 
0.517 

 
  3.55 

 
123.53 

 
     0.510 

 
3.57 

 
        4.5 

 
127.92 

 
0.454 

 
  3.82 

 
124.34 

 
     0.452 

 
3.83 

 
        5.0 

 
132.15 

 
0.410 

 
  4.08 

 
125.08 

 
    0.405 

 
 4.09 
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Table 3:  Mean, standard deviation , average functional evaluations and average computational time over 100 runs for different 

values of depth of cut using LXPM and DE 
 
                                  LXPM 

 
                             DE 

 
 
Depth  of  
   cut (d) 

  
Mean (obj 
func value) 

     
Std. deviation 

 
Avg fun 
Eval 

Avg. 
comput. 
time 

 
Mean 
(obj func 
value) 

 
Std. deviation 

 
Avg fun 
Eval 

 
Avg. 
comput. 
time 

        2.0 2.780401 
 

4.135e-05 308              0.0453          2.78 0.00147145 801.8 0.0489 

       2.5 2.8733757 1.40e-04 338              0.0468          2.87276 2.16583e-005  826.2  0.0542 

      3.0 3.0660640 0.0024726 405              0.0460          3.06573 0.0022352  993.2 0.0558 

      3.5 3.336070 0.0294902 
 

465              0.0474 3.31947 0.00303094 1000 0.0681 

     4.0 3.5686617 0.0108513 
 

426              0.0462          3.57587 0.000988971 997.8 0.0586 

     4.5 3.8364324 0.017543 474              0.1045          3.83784 0.0214352 999.2 0.0599 

    5.0 4.0990033 0.012372 414             0.0752 4.09841 0.00449684 996.6 0.0574 

 

Table 4: The total production time obtained using different methods with percentage deviation of production time with reference 
to BSP methods 

Algorithm BSP          NMS       GA   SA     PSO LXPM         DE 
        

   S.no    doc   Tu Tu       % dev. Tu      % dev. Tu        % dev. Tu       % dev. Tu       % dev. Tu          % dev 

1        2.0   
2        2.5 
3        3.0 
4        3.5 
5        4.0 
6        4.5 
7        5.0 

2.84 
2.93 
3.11 
3.34 
3.59 
3.84 
4.10 

2.87        -1.06 
2.97        -1.37 
3.15        -1.29 
3.44        -2.99 
3.69       -2.79 
3.88        -1.04 
4.23        -3.17 

2.85     -0.35 
3.12     -6.48  
3.13     -0.64  
3.46     -3.59 
3.51    +2.23 
3.96    -3.13 
4.14    -0.98 

2.85      -0.35 
2.93        0 
3.15      -1.27 
3.34        0 
3.59        0 
3.85      -0.26 
4.12       -0.49 

2.78      +2.11 
2.87      +2.05 
3.04      +2.25 
3.29      +1.50 
3.55      +1.11 
3.82      +0.52 
4.08      +0.49   

2.78      +2.11 
2.87      +2.05 
3.06      +1.61 
3.30     + 1.20 
3.55     + 1.11 
3.82      +0.52 
4.08      +0.49   

2.77         +2.47 
2.87         +2.05 
3.06         +1.61 
3.31         +0.89 
3.57         +0.55 
3.83         +0.26 
4.09         +0.24 
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Fig. 2:  Convergence graph for LXPM for different values of depth of cut (d) 
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Fig.1: Comparison of different algorithms for minimizing total production time for different values of 

depth of cut 


