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Abstract

The significant step in CaCO3 fabrication is to obtain homogenous population. There is a wide application in
biomedical and industry market, since many reports have been investigated possible control of its diameter and
shape during fabrication. Nowadays, CaCO3 template can be synthesised in diameter near or less than 120 nm.
Control factors affected CaCO3 nucleation with integration of polymer inside were the main purpose in CaCO3
modification. In spite of great work that was done, designing of CaCO3 matrix as a way to be more attractive for
hydrophobic cargo molecules could need a second eye for other investigation. The modification of CaCO3 matrix not
only can provide mechanical support of all of CaCO3 architecture, or as a vehicle for hydrophobic molecules but also
can be used as a smart vector for integration other drug delivery system such as liposome, micelles or even lipid
nanoparticles.
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Introduction
CaCO3 crystals were considered as one of important inorganic

materials for producing drug delivery carriers [1-4] for several
advantages as following:

1) There is no any sign for histological toxicity after core removal
with EDTA and it is safer in handling than other templates [5].

2) The natural porosity of CaCO3 micro/nanoparticles has provided
them with great advantages for layer by layer adsorption [6]. Hence
polymers used in polyelectrolyte multilayer assembly, will diffuse
through these porous forming interior polyelectrolyte network
complexes having the same materials presented in the shell after the
core removal [2,7]. These connected networks might provide
mechanical and protective support for capsules architecture [8]
allowing for long storage and can cause good stability in blood stream.

3) CaCO3 crystals can be formed with simple mixing of inexpensive
and widely accessible salt precursors, CaCl2 and Na2CO3 and the core
can be removed by EDTA with no more effect on layer by layer
capsules [4,9]. Cargo molecules could be encapsulated inside CaCO3
matrix by either using co-precipitation in its porous (Figure 1A, pre
loading method) [1] or by loading cargo molecule inside Layer by
Layer (LbL) capsules after core removal (Figure 1, post loading
method) [2].

Figure 1: Drug encapsulation schemes (reproduced with permission
from Ref [10]).

The above notable advantages give CaCO3 template much
important use in medical applications and also can be considered as a
good example to study mechanical and physical properties in carrier
fabrication. Although CaCO3 has attracted many attentions and used
in wide applications, the matrix of CaCO3 is still under optimization.
Previously its aggregated state, polymorphism crystallization and its
micrometer diameter were completely solved [10]. The nucleation
process of CaCO3 during fabrication becomes a way for improving the
final CaCO3 template. Indeed, the quality of the resultant
microparticles is introduced to be strongly dependent on the
experimental conditions such as the type of the used salts, their
concentration, pH, temperature, rate of mixing solutions and the
intensity of agitation of the reaction mixture [11-14]. In addition,
inclusion of various additives, such as divalent cations, organic solvents
and macromolecules (synthetic or natural) added to the reaction
mixture, are shown to exert a strong effect on the morphology of the
formed CaCO3 microparticles [15-18].
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Control of CaCO3 Fabrication
In previous reports, CaCO3 synthesis was controlled by adding

organic materials and its derivatives during fabrication. These
materials might strongly influence the crystallization of CaCO3
whereas, stabilized amorphous CaCO3 could be formed due to the
functional groups of organic material leading to control nucleation,
growth, and alignment of the crystals [19,20]. Currently, simple
polyelectrolytes have been used to control the crystallization of
calcium carbonates during synthesis [21]. The functional group of
polyelectrolyte allows to control strongly nucleation and crystals
agglomeration. Hence the single particle of CaCO3 is agglomerated by
tiny smaller crystals resulting from attachment of Ca2+ and CO3-

nuclei. In case of absence of electrostatic balance, these nuclei tend to
bind with other in the same solution causing aggregation and growth
in diameter. Furthermore, their aggregation is not easily separated by
using mechanical separation (example: vortex and shaker or even
physical separation like sonication). The active group of both
polyelectrolyte cationic and anionic polymers could contribute to keep
balance among nuclei. This could be explained from the fact that Ca2+

and CO3- nucleation can accept the active group of polymers to keep
them in most case under electrostatic balance. This property allows to
reduce growth of crystal, furthermore leading to diameter control
(Figure 2) [10].

Figure 2: Scheme of control of CaCO3 crystallization by integration
polymer inside matrix of CaCO3 (reproduced with permission from
Ref [10].

Many polymers have been used to control CaCO3 during
fabrication such as poly (sodium 4-styrene-sulfonate) PSS [22,23], Poly
(allylamine hydrochloride PAH [24], Poly acrylic acid (PAA) and
Chitosan [10] (CH), poly (vinyl alcohol) (PVA), polyacrylamide,
poly(N-isopropyl acrylamide), poly(N-vinyl pyrrolidone), and
poly(ethylene oxide) [10]. From previous studies, it is indicated that
any peptides can influence strongly on CaCO3 nucleation, should
certainly alter the morphology of CaCO3 [25].The demission of CaCO3
from diameter and shape is already studied and the both are
completely controlled by adding polymers during fabrication. As

example, PAA can reduce diameter of CaCO3 to less than 200 nm and
PAH can control morphology of CaCO3 toward elongated shape like
rods. It could be concluded that CaCO3 mineralization can accept
physicochemical properties of used polymers.

Drawback of CaCO3 Controlled by Polymers
As a rule, the spherical CaCO3 microparticles that were obtained by

simple mixing of Ca2+ and CO3- can be turned into rhombohedral
calcite microcrystal after several weeks of storage in water at room
temperature because of re-crystallization [1]. In case of used polymer,
there is no shape change during successive six months of storage[14].
Since the negatively charged of PSS are adsorbed on the matrix of
carbonate nanoparticles constituting the porous CaCO3 microparticles
and prevents the re-crystallizations. High stability of the CaCO3
microparticles in water is very important for the successive LbL
assembly. However this storage is linked much with distilled water,
milli Q water or buffer pH 7.2. In case CaCO3 kept at solution having
ionic salts, acidic solution, or strong minerals, Its morphology can be
changed and re-crystallization is expected. Indeed the polymer
entrapped CaCO3 matrix could answer the ionic stress allowing to
modify CaCO3 configuration. Chitosan, poly acrylic acid [26], poly
allylamine hydrochloride [27] are known with their answer for ionic
stress and they could modulate their chain after they are crystallized
inside matrix of CaCO3. It is proven in case of polymer integrated in a
matrix of CaCO3 to coat them with layer-by-layer alternate adsorption
or to keep them as dried particles at room temperature or to keep them
in water. This environment could prevent CaCO3 re-crystallization.

Designing Matrix of CaCO3

Recently the porous channel of CaCO3 was employed completely as
a safe vector for protein encapsulation (Figure 3) [1].

Figure 3: Scanning Electron Microscopy image of CaCO3 showing
Pores. (reproduced with permission from Ref [10]).

The empty pores were formed among tiny crystals of CaCO3 during
crystallization resulting in connected network after core removal.
These networks could be occupied by cargo molecules. Hence, cargo
molecule can be mixed initially with CaCl2 or Na2CO3 according toits
charge and its ability to be stable under alkaline pH of Na2CO3. After
reaction of the mixture, cargo molecules will be entrapped inside
matrix of CaCO3 [28]. In another case, biomolecules can be adsorbed
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in the pores of the CaCO3 crystals, after their crystallization by
physical adsorption [29,14] chemical cross-linking [30] co-
precipitation, [27] and trapping by coating with polyelectrolyte
multilayers. In order to control the porosity of CaCO3 crystal,
temperature should be optimized during fabrication [9]. It is found
that the CaCO3 crystals with larger pores (prepared at 22 or 45°C) will
be even more penetrable for molecules of interest. The designing of
CaCO3 porous was initially employed by adding several type of
polymers during fabrication such as carboxymethyl cellulose (CMC), a
negatively charged polysaccharide, which was simultaneously
incorporated providing attractive force for positively charged drugs
such as doxorubicin (DOX) [28,14]. Wang et al. (2006) reported that
ibuprofen, a lipophilic drug, was loaded into the polystyrene sulfonate
(PSS)-doped CaCO3 microparticles. Due to the charge repulsion, the
loading amount of ibuprofen was not very large. Moreover, the additive
of PSS has some uncertainties for biomedical applications [14]. In
addition, porous of CaCO3 were design by Cyclodextrins to be
accommodated for hydrophobic materials such as curcumin [31].
Another designing is to generate block co polymer micelles inside
CaCO3 matrix during fabrication. Since polystyrene-blockpoly (acrylic
acid) (PS-b-PAA) was added drop wise into Na2CO3 aqueous solution
under vigorous agitation then CaCl2 was rapidly poured into the
mixed solution under vigorous agitation [23]. It is found that CaCO3
cores possess high connected and very stable internal area [8].
Yashchenok and co-workers have introduced liposomes for
modification of CaCO3 cores and demonstrated that ultrasound (US)
triggered mixing of the liposome encapsulated moleculesand core-
embedded molecules may be achieved in confined volumes [32]. The
other modification for CaCO3 matrix is to involve air bubbles inside
matrix during fabrication by using Plexiglas reactor [33].

CaCO3 and Biological Toxicity
Calcium carbonate nanoparticles have exhibited successful

application as biological subcutaneous delivery [5,34,35]. Many reports
confirmed their safe use for raise their therapeutic activity without
harming biosystems [5]. Jaji and his co-workers investigated the safety
of cockle shells (ANC) as a potential agent for subcutaneous delivery of
biology and drug materials. Confirming that there is no mortality, it
was recorded at the end of the acute and subchronic toxicity
experiments for calcium carbonate injected subcutaneously. With a
LD50 of 6450 mg/kg body weight, calcium carbonate merged a wide
margin of safety and low acute toxicity [36]. The Single doses of 1770
and 11,800 mg/m2 of calcium carbonate did not form any cytotoxicity
while the high dose of 29,500 mg/m2 introduced some toxic signs and
lesions. Okogbue et al. (2014) showed that histological results revealed
that calcium carbonate had no negative impact on the body tissues of
the prawns tested both on the muscle and carapace [37]. Furthermore,
the total calcium ions was higher in serum after administration of
calcium carbonate powder versus calcium citrate tablets [38]. The
multilayered nanocapsules produced by calcium carbonate core
removal observed no evidence for any histological toxicity because
CaCO3 crystals can be removed completely by using disodium
ethylenediaminetetraacetic acid (EDTA) and the ions formed upon
dissolution can be diffused out through the capsule wall rapidly [39].
In case shell, the histological toxicity depends on the type of polymer
formed layers of capsules. From the above mention, calcium carbonate
could be highlighted their potential use in biomedical and industrial
applications. Recently, many type of particles have been introduced as
great vehicles for drug delivery system such as self assembly polymers

[40,41], liposomes [42,43] and micelles [44,45], LbL CaCO3 [10,46],
and LbL magnetic nanoparticles [47].

Conclusion
The potential use of drug delivery system could be raised with smart

modification of CaCO3. In this sense, the shell and core become more
efficient to encapsulate several drugs with hydrophobic and
hydrophilic properties. Several studies have been confirmed that
CaCO3 crystallization could be acceptable for development.
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