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Optical Fiber Surface Plasmon Sensor: Theoretical 
Approach to Detect Viral Aerosols

Abstract
The rapid and precise detection of viral aerosol has received considerable attention to prevent airborne diseases. In these days, coronavirus disease and its detection 
has become a common subject in the worldwide. The study is proposed to the detection of viral aerosol by surface plasmon resonance techniques. In this paper, design 
and optimization of a surface plasmon resonance sensor based on polymer optical fiber for detection of noval coronavirus is theoretically presented and validated. Here, 
S-glycoprotein antigen is considered as the marker of covid. The dependency of resonance wavelength of surface plasmon sensor on numerical aperture and refractive 
index of optical fiber is obtained using ray approach. It is observed that low refractive index core and high numerical aperture of optical fiber waveguide provides the better 
performance to the detection of viral aerosol. The propagation wavelength, propagation length, penetration depth in metal and aqueous media are also calculated and found 
1.475 μm, 81.046 μm, 0.2672 μm, 2.059 μm respectively at 2.0 μm incident wavelength.
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Introduction

The study of viral aerosols has enormously explored area because of 
their unrecognized importance and unresolved technical challenges. Now 
days, tropospheric aerosols have growing interest due to the exposure of 
different bacteria and viruses. The viral and bacterial concentration with their 
ratio in different environment like costal arctic ocean, coastal pacific ocean, 
lake, agricultural soil, forest soil, human gut, air etc. estimated by a group 
of researchers [1]. The airborne viruses i.e. acute respiratory syndrome, 
influenza, rhino, corona, adeno, respiratory syncytial, entero and noroviruses 
etc. Identified and prone to carry by aerosol [2]. The aerosols are classified 
in the term of their mass concentration, particle number concentration and 
particle size distribution and it was found that sub-micrometer sized aerosols 
have the largest contribution to viral diseases like bronchiolitis, asthama, 
lung cancer, pneumonia, croup damage etc [3]. The retention of removal 
viral aerosols by different filters i.e. nano fiber filter, glass fiber filter, PTFE 
filter and alumina nanofiber filter has been studied by the authors [4]. These 
airborne viruses spread out quickly and it is observed that SARS-COV-2 virus 
affected almost 127 billion people followed by 2.8 million deaths [5] therefore 
a rapid, precise and real-time detection of different viral aerosol is the demand 
of present scenario. However, surface plasmon resonance (SPR) technology 
which serves label free and real time detection of ligand-analyte immobilization 
at the sensing surface and may be a suitable candidate for such detection [6]. 
Literatures suggest that the viral surrogate MS2 bacteriophage, Influenza-A 
virus is detected by SPR sensor [7-8]. In SPR sensor a glass substrate coated 
with thin film of metal is used to measure the changes in refractive index (RI) 
of the sensor surface [9]. Now in present covid pandemic this SPR technology 
is growing interest to detect the SARS-COV-2 virus. Theoretically approach 
for detection of S-glycoprotein based on antigen- antibody interaction principle 

is presented by the researches [10-11]. It is also found that SPR technique is 
capable to the detection of sub-micron sized aerosol that can be operated on 
real-time measurement. Therefore, in present communication the detection of 
sub-micron sized viral aerosol loaded with corona virus is presented through 
surface plasmon resonance sensor. 

Research

Theory and design consideration

The schematic diagram of proposed optical fiber sensor is shown in 
Figure 1. The present model consists of an optical fiber in which small part 
are decaled and coated with a thin layer of silver metal. This coated fiber is 
placed in a chamber which sniffs sub-micron sized viral aerosol. Light passes 
into one end of the fiber by through light source and detected by the optical 
spectrum analyzer through its second end. The dielectric constant of the metal 
is given as [12], 

( ) = 1 −
2

2 ( + )

                        
                                      (1)

 
Where λp = 1.6826 × 10-7 m is plasma wavelength and λc = 8.9342 × 10-6 m 
collision wavelength. Surface plasmons are generated due to charge density 
oscillations at the metal and dielectric interface and the associated wave is 
called the Surface Plasmon Wave (SPW). The surface plasmon wave vector 
(kspp) and incident wave vector(k) is given as [13] 

Figure 1. Schematic diagram of optical fiber SPR sensor.

mailto:skumarmaurya85@gmail.com


J Laser Opt Photonics, Volume 9:5, 2022Kumar S, et al.

Page 2 of 4

= 2 √ +
                                                                                                                                       (2)      

 
 k = 2π

λ √εf sin θ
                                    

                         (3)

Where εf , εm and εd are dielectric constant of core of fiber, metal and the 
analyte respectively. λ and  θ denote the wavelength and angle of incident 
light. The SPR occurs when the wave vector of incident light and SPW is 
matches at particular wavelength. At fixed incident angle, this wavelength is 
known as the resonance wavelength (λres). Since metal has the complex RI, 
the real (k'spp ) and imaginary (k''spp ) wave vector of surface plasmon wave is 
as fellow [14]
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Where ε'm and ε''m are the real and imaginary dielectric of the metal. The 
characteristics of surface plasmon wave is describes in the term of surface 
plasmon wavelength (λspp) and surface plasmon propagation Length (δSPP) . 
These each term represents the real (λspp=2π/k'spp ) and imaginary part 
(δSPPP=1/2k''spp ) of the SPW and expressed as 

λspp = λ0√ εm
′ + εd
εm
′ εd
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The field associated with SPW decays exponentially in the perpendicular 
direction of both the media. This relation of surface plasmon penetration depth 
in dielectric (δd )  and metal (δm ) is expressed as 

 

= 2 √ ′ +
( )2   

   

                                                                                             (8)

δm = 2π
λ √ εm

′ + εd
(εm
′ )2                       (9)    

Results and Discussion

To compute the resonance wavelength, standard fused silica optical fiber 
having 0.22 numerical apertures and RI 1.457 coated with silver of thickness 
50nm is considered. Figure 2a shows the variation of propagation constant 
with wavelength at fixed angle of incidence. The propagation constant for 
incident wave and surface plasmon wave at two cover RIs 1.33 red and 1.38 
green is plotted. Here the propagation constant of incident light and surface 
plasmon wave matched at a particular wavelength i.e. 6.05 × 10-7 m and 8.59 
× 10-7 m respectively. Since the change in resonance wavelength with cover 
RI is known as sensitivity therefore the calculated sensitivity is obtained 5.08 
μm/RIU. Figure 2b shows the calculated propagation constant of SPW having 
high cover material RI i.e. 1.43 (gray). It is noted that incident wave and SPW 
does not matched to the considered wavelength region. Therefore, there is a 
limitation to sensing the cover RI by using the standard fused silica fiber. To 
remove this difficulty, the fiber core being the high refractive index of the material 
likes SF-10. The calculated propagation constant for incident wave and SPW 
at three cover RIs 1.33 (red), 1.43 (gray) and 1.53 (Cyan) is shown in Figure 

2c. Here the computed sensitivity is achieved 0.66 μm/RIU and 1.03 μm/RIU. It 
is observed that due to increases the core RI, the cover sensing RI is extended. 
Therefore, the material of fiber is vital role of detection the viral aerosol. To the 
study the viral aerosol of sub-micron size, the different material of fiber core 
i.e. fused silica, BK7, BAF10, SF10, LASF9, Si3N4, Ta2O5 and their respective 
RI 1.457, 1.515, 1.667, 1.778, 1.845, 2.02, 2.10 is considered [15,16]. Using 
these core materials RI and 0.22 NA the calculated sensitivity and related fitted 
curve are shown in Figure 3a the calculated sensitivities are varying from 3.33 
μm/RIU to 0.320 μm/RIU for the detection of S- glycoprotein in a phosphate-
buffered saline (PBS) solution. Here, the cover RI is assessed as, nd=1.3348+ 
Δn, where 1.3348 and Δn(0.012) are the RI of PBS and fluctuating RI due to 
the different concentration of ligand-analyte interaction [10-11]. It is also clear 
that, sensitivity decreases by increasing the core RI of fiber. The variation 
of sensitivity is exhibit at different NA in Figure 3b as far as the plasmonic 
condition is fulfilled for fused silica optical fiber. It is noted that the obtained 
sensitivity is varying from 3.33 μm/RIU to 34.49 μm/RIU. It is observed that 
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Figure 2. Propagation constant at different wavelength (a-c).
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low RI and high NA of the fiber provides the better performance to detection of 
covid loaded viral aerosol but low RI of the fiber not layout a range to detection 
to cover RI. Nowadays, high NA polymer based optical fibers are easily 
available in the market [17]. This PMMA fiber has higher core RI 1.49 and 0.60 
NA. The propagation constant of this PMMA fiber is calculated and shown in  
Figure 4. The attained sensitivity of this fiber is 28.08 μm/RIU for the detection of 
S-glycoprotein in PBS solution. The variations of propagation wavelength and 
propagation length with different wavelength of the incident light are shown in 
Figure 5a and 5b. Similarly, the penetration depth in metal and cover media at 
different incident wavelength are calculated and plotted in Figure 6a and 6b. It 
is observed that by increasing the wavelength of incident light, the propagation 
wavelength, propagation length, penetration depth in metal and aqueous 
media increases. The obtained propagation wavelength, propagation length, 
penetration depth in metal and aqueous media at different incident wavelength 
0.5 μm, 1μm 1.5 μm and 2 μm are tabulated in Table 1. It is observed that the 
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Figure 3. Sensitivity at different core refractive index (a) and numerical aperture (b).
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Figure 4. Propagation constant at different wavelength.
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Figure 5. Propagation wavelength (a) and propagation length at different  
wavelength (b).
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Figure 6. Penetration depth in metal (a) and aqueous media (b) at different wavelength. 
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Incident  
Wavelength (μm)

Propagation  
Wavelength (μm)

Propagation  
Length (μm)

Penetration Depth in Cover 
Media (μm)

Penetration Depth in Metal (μm)

0.5 μm 0.326 2.813 0.109 0.024
1.0 μm 0.723 18.279 0.503 0.026
1.5 μm 1.101 44.411 1.155 0.265
2.0 μm 1.475 81.046 2.059 0.267

Table 1.  SPR sensor parameter at different wavelength.

propagation wavelength and penetration length have remarkable variation to 
the detection of viral aerosol. The increase in penetration depth in cover media 
indicates that the fields penetrate in deep with the increase of wavelength. The 
penetration depth in metal is approximately independent of the wavelength. 

Conclusion

Optical fiber SPR sensors open the new possibilities for development of 
viral aerosol monitoring system. In proposed sensor, it is concluding that high 
sensitivity is achieved at low refractive index and high numerical aperture of 
the fiber. But low RI of the fiber not yields a range to detection to high cover 
RI. Proposed PMMA optical fiber based SPR sensor is able to achieve the 
sensitivity 28.08 μm/RIU for the detection of S-glycoprotein in PBS solution. 
The Surface plasmon parameters in the terms of propagation wavelength, 
propagation length, penetration depth in cover and metal are also calculated 
at different incident wavelength. The proposed optical fiber SPR sensor may 
serves as a portable real-time aerosol monitor that can be applied to detection 
of viral pathogen infectious to humans or animals.
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