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Abstract
The roles played by classical and non-classical opioid receptors and their ligands in cancer are reviewed, starting 

with palliation of pain as the traditional linkage, then summarizing current research topics and clinical trials in cancer 
imaging and therapy, and concluding with a perspective on future directions for the field.
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Pain Relief: Traditional Link Between the Opioid 
System and Cancer

Morphine, the famous natural product of the opium poppy, was 
termed “God’s own medicine” by renowned physician Sir William 
Osler [1]. Morphine and related opioid analgesics, such as codeine 
and oxycodone, are first-line therapy for pain. As a consequence, the 
opioid system is inseparable from palliative care in clinical oncology, 
and there are nearly 10,000 literature citations to the use of opioid 
analgesics for control of cancer pain. Modern pain management with 
opioids that follows the World Health Organization analgesic ladder is 
safe and effective [2]. Despite little risk of dependency when opioids are 
used under such clinical guidelines, an unfortunate tendency persists 
toward under-treatment of cancer pain that adversely affects quality 
of life [2,3].

Opioid analgesic actions are mediated by three classical G-protein 
coupled receptors, denoted mu (µ), delta (δ) and kappa (κ), which are 
located in the brain, spinal cord and certain peripheral organs [4,5]. 
In the 1970’s, the receptors were identified by radioligand binding 
techniques, and the endorphin, enkephalin and dynorphin peptides 
were identified as prominent endogenous ligands [6]. In 1997, highly 
selective m-peptides, termed endomorphins, were added to the roster 
of endogenous ligands [7-9]. Interestingly, human cells also synthesize 
morphine de novo [10,11]. PET imaging of µ opioid receptors in brain 
was accomplished in 1984 at Johns Hopkins University using the potent 
agonist [11C]carfentanil with Professor Henry Wagner as the first 
volunteer [12,13]. Several reviews have chronicled the development of 
m, d and k opioid receptor-binding radiotracers for imaging, and their 
use in clinical studies of drug abuse, neurological disorders and pain 
[14-16]. Opioid receptors do not necessarily function independently, 
and can exist as dimers and heterodimers which modulates their 
pharmacology, and presents new opportunities for drug development 

[17,18]. Crystal structures of the µ, δ and κ opioid receptors bound 
to prototypical antagonist ligands were reported this year in an 
outstanding series of articles in the journal Nature [19-21]. This new 
knowledge should aid in the development of advanced therapeutics. 

The analgesia welcomed by cancer patients is primarily mediated 
by central µ opioid receptors [22], although peripheral opioid receptors 
also play key roles [23]. In fact, the development of peripherally 
restricted opioid analgesics that circumvent centrally mediated 
side effects, such as respiratory depression, euphoria and mental 
clouding, is a topic of much current interest [24-26]. Fine-tuning 
of therapeutic actions is essential, since opioid receptors and their 
ligands influence a host of physiologic processes including immune, 
cardiovascular and respiratory functions, feeding behaviors, and 
smooth muscle contraction [4,5,27]. For instance, the centrally active 
µ receptor agonists used for relief of chronic cancer pain also activate 
gastrointestinal opioid receptors, leading to smooth muscle relaxation 
and constipation. A clinical paradigm for managing bowel dysfunction 
without affecting analgesia includes parenteral administration of the 
quaternary salt N-methylnaltrexone bromide (Relistor®), an opioid 
receptor antagonist that is restricted to the periphery [28].

Classical Opioid Receptors: Molecularly Targeted 
Imaging and Therapy of Cancer

Classical opioid receptors, particularly the µ and δ types, play 
important direct roles in cell growth and cancer biology that are 
moving into the spotlight. Historical perspectives and status updates 
are given below using breast cancer and lung cancer as illustrations.

Breast cancer

Over 200,000 new cases of breast cancer are expected for 2012 
in the United States alone [29]. Almost thirty-five years ago, the 
universal µ, δ and κ opioid receptor antagonists, naloxone and 
naltrexone, were shown to inhibit the growth of chemically-induced 
mammary tumors in vivo in rats, with the beneficial effects attributed 
to central inhibition of hormonal secretions required for breast cancer 
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growth [30]. Radioligand binding studies confirmed that opioid 
receptors were present on ER-positive breast cancer cells [31,32], 
and immunohistochemistry studies showed that the vast majority of 
invasive ductal carcinomas were positive for the endogenous opioid 
peptides b-endorphin and [Met5]-enkephalin [33]. About twenty-five 
years ago, Zagon and colleagues demonstrated that classical opioid 
receptors were over-expressed in biopsy specimens from several human 
cancers, including two breast carcinomas [34]. We now know that these 
receptors are present with sufficient density to allow clinical imaging, 
and a non-invasive PET study visualized µ and d opioid receptors 
on the primary tumors of a breast cancer patient in 2002 [35]. The µ 
receptor agonist, [11C]carfentanil [12], and the d receptor antagonist, 
[11C]methylnaltrindole [36,37], were used as the radioligands (Figure 
2). Just this year, an epidemiological investigation of 2,039 breast cancer 
patients correlated stage at presentation, as well as ten-year survival, 
with A118G polymorphism of the µ opioid receptor gene [38]. This 
provides strong evidence for critical involvement of the opioid system 
in breast cancer progression.

Opioid receptors and ligands work through complex mechanisms 
to modulate cell growth and death [39,40], and the effects of systemic 
morphine on tumor growth remain controversial to this day [41,42]. 
On the other hand, increasing brain levels of the endogenous agonist 
β-endorphin, by transplanting β-endorphin producing neurons into 
the hypothalamus of rats, causes reduction of chemically-induced 
mammary tumor incidence, growth and metastasis [43]. Elevated 
levels of peripheral natural killer cells, macrophage activity and anti-
inflammatory cytokines were observed. The anti-cancer effects and 
stimulation of the immune system were naloxone-reversible, indicating 
an opioid receptor-mediated process. Somewhat paradoxically, 
laboratory findings consistently indicate that systemic administration 
of µ opioid receptor antagonists might be useful for breast cancer 
therapy [44]. Postulated mechanisms include promotion of ER / µ 
opioid receptor cross-talk, inhibition of MAPK / Erk phosphorylation, 
and down-regulation of nuclear ER activity [45]. At present, patients 
are being recruited for a Phase II clinical trial designed to assess the 
efficacy of naltrexone against hormone-refractory metastatic breast 
cancer [46].

Lung cancer

Opioid receptors and ligands are under active investigation as 
molecular targets for imaging and therapy of lung cancer, the leading 
cause of cancer deaths worldwide [47]. High expression of classical 
opioid receptors is a feature of many human lung cancers, but not 
normal lung tissue. Opioid receptors were detected in cell lines 
established from primary and metastatic sites of SCLC and non-SCLC 
over twenty years ago [48,49], and the concept of opioid receptors 
as targets for diagnostic imaging of lung cancer was espoused about 
fifteen years ago [50,51]. However, the first PET studies of µ and d 
opioid receptors in lung cancer patients were reported only five years 
ago [52]. We used the µ agonist, [11C]carfentanil, and the d antagonist, 
[11C]methylnaltrindole (Figure 2), to visualize opioid receptors on 
the primary pulmonary tumors of six SCLC and non-SCLC patients. 
Uptake of both radioligands was significantly greater in tumors than in 
normal lung, [11C]methylnaltrindole uptake (δ) was greater than [11C]
carfentanil uptake (µ), and tumor receptor binding was blocked in both 
cases by the universal opioid receptor antagonist naloxone.

These two lipophilic radioligands were developed for brain PET, 
and are not optimal for peripheral imaging in oncology [14]. A new 
generation of hydrophilic opioid receptor radioligands, specifically 
designed for peripheral studies, is now under development. For 
instance, indium-111 labeled DO3A conjugates of naltrindole (Figure 

2) are metabolically stable, maintain very high affinity and selectivity 
for d opioid receptors in vitro [53], and bind tenaciously in vivo to d 
opioid receptors expressed by SCLC tumor xenografts in mouse models 
[54]. Indium-111 labeled ligands are intended for SPECT imaging, but 
extrapolation to include special-purpose radiometals having a range of 
nuclear properties for PET imaging (Cu-64) or molecularly targeted 
radiotherapy (Lu-177, Y-90) should be possible. Conjugation of a 
cyanine dye to the d opioid receptor peptide Dmt-Tic-Lys has been 
reported to yield a fluorescent analog suited for complementary in vivo 
optical imaging studies [55]. So far, attempts to structurally modify µ 
opioid peptides, including the endomorphins, with radiometal-labeled 
substituents for in vivo imaging have not been successful [56].

Silencing either µ or δ opioid receptors in lung adenocarcinoma 
cells inhibits EGFR-induced signaling [57], suggesting the possibility 
of opioid receptor-based lung cancer therapies. Recent and compelling 
evidence shows that µ opioid receptors, in particular, are integral for 
the regulation of non-SCLC growth. The µ opioid receptor is over-
expressed by 13 of 13 non-SCLC cell lines representing all major 
histological types, and by 30 biopsy specimens of human non-SCLC 
tumors with respect to adjacent normal lung [58,59]. Further, silencing 
µ receptors, or continuous antagonist blockade with naltrexone or 
N-methylnaltrexone bromide, inhibits non-SCLC growth and metastasis 
in vivo in animal models [58,59]. Moreover, Lewis lung carcinoma 
cells did not form syngeneic tumors when given to µ opioid receptor 
knockout mice [58]. Transfection of a bronchoalveolar carcinoma cell 
line to induce even greater over-expression of µ opioid receptors also 
augmented its flank tumor growth rate and level of lung metastasis 
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Figure 2: Radioligands for in vivo imaging of opioid receptors. 
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in nude mice [59]. Activation of serine / threonine kinase pathways, 
Akt and mTOR, are the primary mechanisms identified for µ opioid 
receptor mediation of non-SCLC progression [59]. These laboratory 
studies were driven, in part, by observations made at the University 
of Chicago that certain cancer patients receiving N-methylnaltrexone 
bromide for relief of µ opioid-induced constipation exhibited longer 
than anticipated survival [60]. Thus, N-methylnaltrexone bromide 
(Figure 1) is a promising candidate for repurposing as a lung cancer 
therapeutic.

Opioid Growth Factor and Receptor for Targeted 
Therapy of Cancer

In 1989, Zagon, McLaughlin and colleagues at Pennsylvania State 
University reported the discovery of a distinct, non-classical binding site 
for opioids that they initially termed the zeta (ζ) opioid receptor [61]. 
Further pioneering work showed the site to be a membrane protein, 
associated with the nucleus, which bears no structural resemblance 
to classical opioid receptors located on the cell surface [62]. This site 
has been renamed the opioid growth factor receptor (OGFr). [Met5]-
enkephalin (Figure 3) has been termed the opioid growth factor (OGF) 
because of potent inhibition of cancer cell growth through OGFr in 
vitro when other opioid peptides, such as b-endorphin, were without 
effect [62]. Activation of OGFr modulates DNA synthesis, and appears 
to inhibit cell growth by translocation of peptide-receptor complexes 
adjacent to heterochromatin inside the nucleus [62].

Traditional opioid receptor antagonists, such as naltrexone, also 
bind to OGFr and can block the actions of [Met5]-enkephalin. In 
turn, [Met5]-enkephalin also binds well to the classical δ and µ opioid 
receptors. Thus, differentiation of the opioid receptor(s) responsible 
for the various actions of [Met5]-enkephalin and naltrexone can be 
difficult. In the early 1980’s, before the discovery of the OGFr, studies 
by Zagon and McLaughlin [63,64] showed that naltrexone modulates 
neuroblastoma tumors in mice in strikingly dose-dependent fashion. 
Daily treatments with naltrexone at 0.1 mg / kg blocked opioid 
receptors for 6 - 8 hours per day, reduced tumor incidence to 33%, 
delayed tumor appearance by 98%, and increased survival time by 36%. 
By contrast, daily treatments with naltrexone at 10.0 mg / kg blocked 
opioid receptors for a full 24 hours per day, gave a tumor incidence 
of 100%, delayed tumor appearance by 27%, and decreased survival 
time by 19%. Both naltrexone regimens caused up-regulation of 
classical opioid receptor sites on the tumors, and increased tissue levels 
of β-endorphin and [Met5]-enkephalin by up to six-fold. However, 
only the chronic low dose naltrexone (LDN) protocol gave significant 
antitumor effects. Zagon and McLaughlin surmised that endogenous 
opioids are trophic agents that inhibit tumor growth by suppressing 
cell proliferation, and that the duration of opioid receptor blockade 

by antagonists is critical for modulation of these actions in vivo. Thus, 
intermittent blockade up-regulates opioid peptides and receptors, 
leading to decreased tumor cell growth during those times when the 
antagonist is absent [65].

In 2011, Donahue et al. [66] used an elegant tissue culture model 
system to show that exposure of cancer cells to naltrexone for a short 
period of time inhibits their growth, and that up-regulation of OGFr 
- OGF appears to be uniquely responsible. Ovarian cancer, pancreatic 
cancer, squamous cell carcinoma of the head and neck, and colorectal 
cancer cell lines all gave similar results. In companion studies, OGF 
and LDN were shown to significantly inhibit the progression of human 
ovarian cancer in a nude mouse model [67], an effect that could be 
further enhanced by combination with cisplatin, a standard of care 
chemotherapeutic agent [68]. As discussed in detail by Donahue et al. 
[66-68], the findings provide mechanistic support for the use of OGF 
and LDN in cancer therapy. The primary component of their current 
LDN concept is that repetitive, but short-term, blockade of OGFr 
with naltrexone increases OGFr number as well as levels of OGF. As 
naltrexone is eliminated from the body, amplified OGFr and OGF 
are able to interact again with increased ability to inhibit cancer cell 
proliferation.

The efficacy of OGF alone for treatment of advanced pancreatic 
cancer was demonstrated in a recent Phase II clinical trial involving 
twenty-four patients who had failed standard of care chemotherapy 
[69]. Weekly treatment with intravenous OGF led to 3-fold longer 
survival time as compared to untreated patients, and 62% of subjects 
who survived more than two months had decreased or stabilized 
tumor mass. A more limited cohort of four patients with advanced 
pancreatic cancer exhibited much longer than expected survival in 
response to a combination of LDN and a-lipoic acid, an enzyme 
cofactor with antioxidant properties and beneficial effects on immune 
cell function [70]. In a case report, six months of LDN therapy alone led 
to significant improvements in lymph node size and metabolic activity 
for a single patient with B-cell lymphoma [71]. Naltrexone exerts 
neuroimmunomodulatory effects itself, albeit at higher dosage levels. 
Lissoni et al. [72,73] documented naltrexone suppression of T helper-2 
cell activity and amplification of the anti-cancer cytokine, interleukin 2, 
in clinical trials involving cancer patients with diverse metastatic solid 
tumors. Two upcoming clinical trials posted at clinicaltrials.gov will 
test LDN against metastatic melanoma, castration-resistant prostate 
cancer and renal cancer [74], and as an agent for improving quality of 
life in glioma patients [75]. Thus, the LDN concept is gaining traction 
within the mainstream medical community. LDN is often mentioned 
on the Internet [76,77] and in the popular press [78] as a promising, 
inexpensive off-label adjuvant cancer treatment, replete with anecdotal 
descriptions of beneficial effects.

Perspectives
The remarkable ability of opioid receptors and opioid analgesics 

to alleviate pain is their traditional link to cancer, a union that will no 
doubt continue. However, the relationship is becoming much more 
meaningful. In their 1986 article in the journal Cancer, Roth and 
Barchas [48] reported the presence of opioid peptides and receptors on 
SCLC cells, and presciently stated: “If individual cancers can be defined 
by the peptides and receptors they express, it may be possible to design 
rational therapy in an individualized manner.” We are fortunate to be 
in an era where personalized medicine is becoming a reality. Although a 
challenging proposition, innovative, molecularly targeted therapies for 
cancer can be matched to the particular patients most likely to benefit 
[79-81]. The BATTLE trial in lung cancer [82] and the I-SPY TRIAL in 
breast cancer [83] are major steps forward, showing the feasibility of 
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using a patient’s own biomarkers to select the best treatment option for 
them. To note but one important example, non-SCLC patients having 
EGFR mutations are a small percentage of the total patient population, 
but are very responsive to tyrosine kinase inhibitors such as erlotinib 
(Tarceva®), leading to notable survival benefits [84]. 

Over the past several years, significant progress has been made in 
identifying the roles that classical and non-classical opioid receptors 
and their ligands play in cancer biology, and the pace of discovery 
has quickened. Some mysteries, and many questions, remain. For 
instance, relatively little is known about direct involvement of the k 
opioid receptor in cancer. More information would be welcome, since 
a study this year showed that a selective k agonist inhibits the growth of 
non-SCLC cells, in naloxone-reversible fashion, through a mechanism 
involving death-promoting glycogen synthase kinase 3b [85]. Scant 
information is available relating the fourth recognized opioid receptor, 
ORL1, to cancer. ORL1, also known as the nociceptin / orphanin FQ 
receptor, is an intriguing G-protein-coupled site that displays about 
60% sequence homology to the classical opioid receptors, but does not 
bind most traditional opioids because of conformational differences in 
its ligand binding pockets [86,87]. ORL1 activation may cause inhibition 
of pro-inflammatory cytokines and chemokines [88], but more specific 
connections to cancer remain to be established. An emerging topic 
for exploration is modulation of µ and d opioid receptor homo- and 
heterodimerization in vivo, a phenomenon which influences mammary 
tumor growth in a rat model by an unknown mechanism [89].

Abundant evidence shows that cancer therapy mediated by opioid 
receptors and their ligands is a real possibility. Phase II clinical trials 
with OGF, as well as high- and low-dose naltrexone, are already being 
conducted with some success. The anticancer effects to be gained from 
continuous opioid receptor blockade, as discussed above for breast and 
lung cancer therapy in animal models, would not be likely under the 
mechanistic paradigm of LDN alone. On the other hand, LDN clearly 
is effective in some animal models when continuous receptor blockade 
is not. Taken together, the available laboratory data point to multiple 
mechanisms for opioid actions on cancer cell growth that involve the 
classical opioid receptors, as well as the putative non-classical OGFr 
that has not been as widely studied. The effects observed are often 
dependent upon study specifics. Thus, routine clinical integration 
of opioid-mediated cancer therapy will require a much better 
understanding of the complex interplay between the various molecular 
mechanisms that may be involved, as well as concrete results from well-
structured clinical research trials.

Molecular imaging is sure to play a part in the continued translation 
of the research into the clinic. Taking the personalized medicine 
approach, one might envision µ opioid receptor PET as a way to stratify 
lung cancer patients into a cohort that would benefit from µ receptor 
antagonist therapy. Perhaps patients with cancers that over-express d 
opioid receptors could be identified by SPECT using a ligand labeled 
with the g-emitter In-111, and then treated by targeted radiotherapy 
using an analog labeled with a cell-killing b-emitter such as Y-90. 
In addition to their complex effects on cancer cell growth, opioid 
receptors and their ligands also mediate many normal functions. Thus, 
the therapeutic “window” for opioids in oncology might be narrow, but 
is definitely worth opening. 
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