
Open AccessISSN: 2229-8711

Global Journal of Technology and OptimizationMini Review
Volume 14:5, 2023

*Address for Correspondence: Miller Baroz, Department of Mathematical 
Sciences, University of Essex, Colchester CO4 3SQ, UK; E-mail: baroz.
miller@nov.uk
Copyright: © 2023 Baroz M. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author 
and source are credited.
Received: 02 October, 2023, Manuscript No. gjto-23-119435; Editor assigned: 
04 October, 2023, Pre QC No. P-119435; Reviewed: 17 October, 2023, QC No. 
Q-119435; Revised: 23 October, 2023, Manuscript No. R-119435; Published: 30 
October, 2023, DOI: 10.37421/2229-8711.2023.14.349

Open-Source Tools and Libraries for Profile-Guided Optimization
Miller Baroz*
Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK

Abstract
Profile-Guided Optimization (PGO) is a powerful technique for improving the performance of software applications. By collecting runtime data and 
feedback from actual program executions, PGO enables compilers to make informed decisions about code optimization. In this article, we explore 
open-source tools and libraries that facilitate PGO, helping developers create faster and more efficient software. We discuss the benefits of PGO, 
its implementation process and showcase popular open-source solutions, highlighting their features, use cases and advantages.

Keywords: Profile-Guided Optimization (PGO) • Open source • Performance tuning • Compiler optimization • Runtime data

Introduction

Profile-Guided Optimization (PGO) is a technique that empowers 
developers to enhance the performance of their applications by making data-
driven decisions about code optimization. By collecting runtime data and 
feedback from real-world executions, PGO allows compilers to generate code 
that is optimized for specific use cases. We'll explore the benefits of PGO, 
its implementation process and discuss some popular open-source solutions 
that enable PGO. Improved Performance: PGO enables compilers to optimize 
code based on the actual usage patterns of an application. This results 
in faster execution times and reduced memory usage, leading to improved 
overall performance. PGO can help reduce the size of binary executables by 
eliminating unused code paths and functions. This is particularly important for 
mobile and embedded applications with limited storage.

PGO optimizes code for the specific usage patterns of an application. 
This means that frequently executed code paths receive more aggressive 
optimization, while less-frequently used code remains efficient but not over-
optimized. PGO can improve cache locality by reordering code or data 
structures based on the program's behavior, leading to fewer cache misses and 
faster execution. Compile the code with instrumentation enabled. This means 
that the compiler inserts code to collect runtime data. The instrumented binary 
is run with representative inputs. During the execution of the instrumented 
binary, runtime data is collected. This data includes information about hot code 
paths, branch probabilities and function call frequencies. The collected data is 
used to create a profile that describes the program's behavior. This profile can 
include a variety of information, such as execution counts, branch probabilities 
and function call frequencies [1].

Literature Review

The code is recompiled with the profile information. The compiler can 
use this data to make informed decisions about optimization. GCC is one 
of the most widely used open-source compilers. It supports PGO through 
the -fprofile-generate and -fprofile-use options. Developers can use GCC to 
create instrumented binaries, collect profile data and then recompile their code 

with PGO-enabled optimizations. The LLVM compiler infrastructure, along 
with the Clang C/C++ compiler, provides excellent support for PGO. LLVM's 
llvm-profdata and llvm-profgen tools assist in generating and using profile 
data, making PGO integration seamless. For Python developers, PyPy is an 
alternative implementation of the Python programming language that offers 
a just-in-time compiler with PGO capabilities. It can significantly speed up 
Python code by optimizing frequently executed paths [2].

AutoFDO is a framework developed by Google for use with GCC and LLVM. 
It automates the PGO process, reducing the need for manual instrumentation. 
It's particularly beneficial for large codebases and complex projects. BOLT is 
an open-source binary optimization tool developed by Facebook. It optimizes 
the layout and organization of code within an executable, improving cache 
locality and reducing branch mispredictions. Profile-Guided Optimization is a 
valuable technique for enhancing the performance of software applications. 
Open-source tools and libraries have made PGO accessible to developers 
across different programming languages and platforms. By harnessing 
the power of PGO, developers can create faster, more efficient and leaner 
software, improving the user experience and overall system performance [3].

As technology continues to advance, incorporating PGO into the 
development process is becoming increasingly important, ensuring that 
software remains competitive and responsive to user demands. Open-source 
PGO solutions empower developers to make data-driven decisions, resulting 
in code that is optimized for the real-world scenarios in which it operates. The 
effectiveness of PGO heavily relies on the quality and representativeness 
of the profile data. Inaccurate or incomplete data can lead to suboptimal 
optimizations. Therefore, it's crucial to ensure that profiling data is collected in 
real-world scenarios and covers various usage patterns. Profiling can introduce 
runtime overhead, potentially slowing down the application. It's essential to 
carefully balance the benefits of PGO with the performance impact of profiling 
during data collection [4].

Discussion

PGO profiles can become outdated as the application evolves. Frequent 
profiling and re-optimization may be necessary, which can be time-consuming. 
Not all projects or platforms may be compatible with PGO. Some codebases 
may be too complex or dynamic to benefit from PGO, or they may require 
significant modifications to integrate profile collection. It's important to 
thoroughly test and validate the optimized code to ensure it functions correctly 
and doesn't introduce new bugs or unexpected behavior.

Machine learning algorithms may be used to analyze profiling data and 
make even more sophisticated optimization decisions, resulting in highly-
tailored performance improvements. Developers are working on making 
PGO more accessible and effective across a wide range of platforms, from 
desktop to mobile and cloud environments. Tools like AutoFDO and BOLT 
are indicative of a trend towards automating PGO, reducing the manual effort 

mailto:baroz.miller@nov.uk
mailto:baroz.miller@nov.uk
navarro2th@edu



Global J Tech Optim, Volume 14:5, 2023Baroz M.

Page 2 of 2

required for profile data collection and optimization. Developers are exploring 
ways to make PGO work seamlessly with a broader range of programming 
languages and development tools, breaking down existing language and 
platform barriers [5,6].

Conclusion

Profile-Guided Optimization is a valuable tool for developers looking to 
squeeze every bit of performance out of their software applications. Open-
source solutions, like GCC, LLVM/Clang and AutoFDO, have made PGO 
accessible to a broader audience, enabling projects of all sizes to benefit from 
this optimization technique. As the software development landscape continues 
to evolve, PGO is expected to remain a vital strategy for creating efficient 
and performant applications. The ability to optimize code based on real-world 
usage data is an essential component in meeting the ever-increasing demands 
for faster, more responsive and resource-efficient software.

Incorporating Profile-Guided Optimization into the software development 
process can be a game-changer, helping developers create applications 
that not only meet user expectations but also stand out in an increasingly 
competitive market. By staying informed about the latest developments in PGO 
and leveraging open-source tools and libraries, developers can harness the 
full power of this optimization technique to deliver software that excels in both 
speed and efficiency.

Acknowledgement

We thank the anonymous reviewers for their constructive criticisms of the 
manuscript. 

Conflict of Interest		

The author declares there is no conflict of interest associated with this 
manuscript.

References
1.	 Malik, Paras, Monika Pathania and Vyas Kumar Rathaur. "Overview of artificial 

intelligence in medicine." Fam Med Prim Care care 8 (2019): 2328. 

2.	 Dhouibi, Raouia, Hanen Affes, Maryem Ben Salem and Serria Hammami, et al. 
"Screening of pharmacological uses of U. dioica and others benefits." Prog Biophys 
Mol Biol 150 (2020): 67-77. 

3.	 Angus, Derek C. and Tom Van der Poll. "Severe sepsis and septic shock." N Engl 
J Med 369 (2013): 840-851. 

4.	 Vincent, Jean-Louis, Yasser Sakr, Mervyn Singer and Ignacio Martin-Loeches, et 
al. "Prevalence and outcomes of infection among patients in intensive care units in 
2017." Jama 323 (2020): 1478-1487. 

5.	 Gong, Maoguo, Licheng Jiao, Haifeng Du and Liefeng Bo. "Multiobjective immune 
algorithm with nondominated neighbor-based selection." Evol Comput 16 (2008): 
225-255. 

6.	 Xiao, Mingchao, Jiaojiao Zhao, Qiang Wang and Jia Liu, et al. "Recent advances 
of degradation technologies based on PROTAC mechanism."  Biomolecules  12 
(2022): 1257. 

How to cite this article: Baroz, Miller. “Open-Source Tools and Libraries for 
Profile-Guided Optimization.” Global J Technol Optim 14 (2023): 349.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691444/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6691444/
https://www.sciencedirect.com/science/article/pii/S0079610719300987
https://www.nejm.org/doi/full/10.1056/NEJMra1208623
https://jamanetwork.com/journals/jama/article-abstract/2763669
https://jamanetwork.com/journals/jama/article-abstract/2763669
https://direct.mit.edu/evco/article-abstract/16/2/225/1288
https://direct.mit.edu/evco/article-abstract/16/2/225/1288
https://www.mdpi.com/2218-273X/12/9/1257
https://www.mdpi.com/2218-273X/12/9/1257

