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One Dimensional Heat Equation and its Solution by the 
Methods of Separation of Variables, Fourier Series and 
Fourier Transform

Abstract
The aim of this paper was to study the one-dimensional heat equation and its solution. Firstly, a model of heat equation, which governs the temperature distribution 
in a body, was derived depending on some physical assumptions. Secondly, the formulae in which we able to obtain its solution were derived by using the Method 
of separation of variables along with the Fourier series and the method of Fourier transform. Then after, some real-life applications of the equations were discussed 
through examples. Finally, a numerical simulation of the raised examples was studied by using MATLAB program and the results concluded that the numerical 
simulations match the analytical solutions as expected.
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Introduction

The heat equation is an important partial differential equation which describe 
the distribution of heat (or variation in temperature) in a given region over 
time. The heat equation is a wonderland for mathematical analysis, numerical 
computations, and experiments. It’s also highly practical: engineers have to 
make sure engines don’t melt and computer chips don’t overheat. Due to this 
and other many real-life applications of heat equations, we need to analyze 
the concepts in detail. 

For better understanding, we have to recognize differences between heat 
and temperature. Heat is the flow of thermal energy from a warmer place to a 
cooler place. Thus, the term heat is used to describe the energy transferred 
through the heating process. On the other hand, temperature is a physical 
property of matter that describes the hotness or coldness of an object or 
environment. Therefore, no heat would be exchanged between bodies of the 
same temperature [1]. 

The one-dimensional heat equation that we are going to see in this study is 
given by the formula

where  is a function of temperature,  is the constant thermal 
conductivity of the materials,  is time and  is a spatial variable. Here the 
“one-dimensional” refers to the fact that we are considering only one spatial 
dimension [2].

In this study, we focus on the derivation of one-dimensional heat equation 
and its solution using methods of separation of variables, Fourier series and 
Fourier transforms along with its numerical analysis using MATLAB.

Derivation of Heat Equation in One Dimension

In this section, we will derive a one-dimensional heat equation which governs 
the temperature in a body in space. We obtain this model of temperature 

distribution under the following physical assumptions.

Physical Assumptions

1. We consider a thin rod of length , made of homogenous material (material 
properties are translational invariant) and the rod is perfectly insulated along 
its length so that heat can flow only through its ends (see Figure 1).

2. The specific heat and the density of the material of the rod are constant. 
No heat is produced or disappears in the body.

3. Experiments show that, in a body, heat flows in the direction of decreasing 
temperature, and the heat flow  is proportional to the temperature gradient, 
that is, (in one dimension), where  is the thermal 
conductivity of the material (solid) and the negative sign denotes that the 
heat flux vector is in the direction of decreasing temperature,  is the 
temperature at a point  and time t.

4. The thermal conductivity is constant, as is the case for homogeneous 
material and nonextreme temperatures.

Depending on the given physical assumptions and Figure 1 above, we can 
derive a formula of the heat equation as follows.

Let  be the temperature of the homogenous thin rod at a distance 
 at time . We consider an infinitesimal piece from the rod with length 

. If is the cross-section of the rod and ρ is the density of the 
material of the rod, then the infinitesimal volume is given by  and 
the corresponding infinitesimal mass is . Then, the amount of 
heat for the volume element is , where  is the specific 
heat of the material of the rod (bar).

At time , the amount of heat is

Depending on an assumption (3), the 
change in heat must be equal to the heat flowing in at , minus the heat 
flowing out at , during the time interval , that is,

 

Figure 1. A thin homogenous rod of length , perfectly insulated along its length.
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Then after dividing both sides by  we obtain

Taking the limit on both sides as and , and by applying the 
definition of derivative we obtain:

which gives the required one-dimensional heat (diffusion) equation 

determining the heat flow through a small thin rod. Here,  is called 
the constant thermal conductivity [2, 3].

Solution of Heat Equation using the Methods of 
Separation of Variables and Fourier Series

We shall solve  by using methods of separation of variables and 
Fourier series, for some important types of boundary conditions (BC) and 
initial conditions (IC). We begin with the case in which the ends  and 

 of the rod (bar) are kept at temperature zero, so that we have the 
boundary conditions (BC)

Furthermore, the initial temperature in the rod at time  is given, say,
, so that we have the initial condition (IC)

Due to ),  and .

We shall determine a solution  of  satisfying ) and 
). 

Let  be a solution of Eq. (1). Substituting 
 and  we get:

From this equality, we deduce that both functions must be equal to some 
constant  as one of them is a function of only and the other is a function 
of , unless the equality may not hold. Hence

Now, in order to solve ) we will have the following three cases.

Case I:  is positive (= , say). 

) takes the form

For  we try to find a solution of the form  and 
obtain an auxiliary equation , which implies . 
Therefore, its solution is

 where  are arbitrary 

constants.

Note that from [4],we have that for , if we 

choose  and , we get a particular solution 

 and 

Since  and  are linearly independent on any interval of - 

axis, an alternative form for the general solution of  is 

Similarly, 

Hence, the general solution of the heat equation, , is 

where 

From the boundary condition on ) it follows that 

To obtain  we use 

Therefore, 

Case II: . 

) takes the form

where  and  are arbitrary constants.

A general solution of the heat equation for this case is

To determine  and  we use Eq. (2) as follows:

Hence

Case III:  is negative ( , say). 

) takes the form

For  the auxiliary equation is , which 
is a conjugate complex root with , ( ). 

Hence, its general solution is of the form 

where  are arbitrary constants.

Similarly, 

where  is constant. From the boundary conditions it follows that
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Since  would give , which is a trivial 
solution, we restrict  and require . Hence,

Here we will still make a restriction  to get .Thus, 

Setting we will obtain infinitely many solutions of ), that is 
, where

These solutions satisfy ). Note that for negative integer we 
obtain essentially the same solutions, except for a minus sign, because 

We now substitute in ) and again obtain an 
infinitely many solutions,

where  is a constant. Hence the functions 

are solutions of the heat equation, ( ), satisfying ).

Here, ) is a solution of  that satisfies the boundary conditions 
given on ) but we didn’t use an initial condition given on ). 
To obtain a solution that also satisfies the initial condition on ), we 
consider a series of ). That is,

From the initial condition, ), we have 

Hence for ) to satisfy ), ’s must be the coefficients of the 
Fourier sine series. Thus, 

The solution of our problem can be established, assuming that  is 
piecewise continuous on the interval .We can generalize this 
method by the following theorem [3, 5, 6].

Theorem 1:  The nontrivial Fourier series solution of the heat equation 
  with the boundary condition (BC)

and initial condition (IC) 

is given by the formula

where

Example 1:A thin bar of length  units is placed in boiling water (temperature 
). After reaching  throughout, the bar is removed from the 

boiling water. With the lateral sides kept insulated, suddenly, at time  
the ends are immersed in a medium with constant freezing temperature . 
Taking , find the temperature  for .

Solution: The problem that we need to solve is 

BC:  and 

IC: .

From Theorem 1, we have

where

But  implies

Hence, the required temperature distribution of the bar for all  is

If we substitute a given value of  into this series solution, we will obtain a 
function of  alone. This function gives the temperature distribution of the 
bar at the given time t.

Numerical Solution of Example 1 by its graph

Apart from above method we used to obtain analytical series solution of 
Example1, we can use numerical simulations to visualize a physical meaning 
and behavior of the solution obtained by sketching its graph. In the following, 
we will introduce the solution procedures by using a syntax of partial 
differential equation solver pdepe() provided in MATLAB PDE Toolbox. 
We might prepare the following MATLAB function and place in the @sym 
directory.

function [c,f,s] = pdex1pde(x,t,u,DuDx) %pdex1pde is the function name, 
where as the function c, 
%f and s can be calculated from the heat equation 
c = 1; 
f = DuDx; 
s = 0;

function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) % syntax of the boundary 
condition, for left and % right bounds 
pl = ul; 
ql = 0; 
pr = ur; 
qr = 0;

function u0 = pdex1ic(x) % syntax of the initial condition 
u0 = 100;

x=0:.5:pi; % 0 < x < pi 
t=0:0.5:4; % time interval with 0.5 step size. 
m=0; 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
u = sol(:,:,1); % Extract the first solution component as u. 
surf(x,t,u) % A surface plot is often a good way to study a solution. 
title('Fig. 2: Numerical solution surface') 
xlabel('Distance x') 
ylabel('Time t') 
zlabel('u(x,t)') 
% A solution profile can also be illuminating. 
figure 
plot(x,u(end,:)) 
title('Fig. 3: Temperature distribution in a bar for t>0') 
xlabel('Distance x') 
ylabel('u(x,t)') 
grid
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Figures 2 & 3 shows the temperature distribution of the rod at the taken values 
of  in an interval . Figure 2 illustrates that for , the temperature 
distribution in the rod (with ends held at ) is the same with the given initial 
temperature  as it was expected; and for small values of 

, the temperature in the bar close to the initial temperature and for 
large values of , the temperature decays to . Figure 3 simply 
illuminates a solution profile of Figure 2.

Solution of Heat Equation using the Method of Fourier 
Transform

Our discussion of heat equation, ( ), here is extended to rods (bars) 
of infinite length, which are good models of very long bars or wires. Let 
us illustrate the method by solving  for a bar that extends to infinity 
on both sides and is laterally insulated. Then we do not have boundary 
conditions, but only the initial condition (IC)

where  is the given initial temperature of the bar.

Let  denote the Fourier transform of , 
regarded as a function of . Then, the heat equation becomes, 

Recall that . Therefore,

and

Hence, 

and

Now, assuming that we may interchange the order of differentiation and 
integration, we have

Here the symbol  denotes the transform of the derivatives  and  

denotes the derivative of the transform .

Thus, ) becomes

Since this equation involves only a derivative with respect to but none 
with respect to , this is a first order ordinary DE, with as the independent 
variable and as a parameter. Hence 

where  is an arbitrary function of .

The Fourier transform of the initial condition  yields: 

Substituting this in ) we obtain that 

Hence ) becomes

But we know that the Fourier inverse of  
is 

Therefore, by substituting ) in this equation, we will obtain 

where  is another notation for . 

In ) we may insert the Fourier transform  

and exchange the order of integration as follows:

By Euler formula, the integral of the inner function becomes

Figure 2. Numerical solution surface.

Figure 3: Temperature distribution in a bar for t>0.
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Since  is an odd function of , its integral is 0 and 

as  is even function of , its integral from  to 
equals twice the integral from 0 to . Hence

Then we can evaluate the inner integral of ) by using the formula

This takes the form of our inner integral if we choose  as a new 

variable of integration and set . Then  and 

 so that ) becomes

By inserting this result into ) we obtain the representation

Taking  as a variable of integration, we get the alternative form

If  is bounded for all values of and integrable in every finite interval, 
it can be shown that the function on ) or ) satisfies the 
heat equation and its initial condition. Hence ) or ) is the 
required solution [2, 6, 7, 8]. We can generalize this method by the following 
theorem.

Theorem 2: The nontrivial Fourier transform solution of the heat equation 
 with the initial condition (IC)

is given by the formula

where  is the given initial temperature. 

Moreover, to get a most simplified answer we might substitute  
and use

Example 2: Solve the heat problem on the infinite line with  and initial 
temperature distribution  if and otherwise.

Solution: In order to solve this problem, we will use Theorem 2.

Since the given initial temperature is  we might 

break up the limit of integral into three and obtain

To simplify this, we will substitute  and use the following conversions 
with .

Hence

This integral is not an elementary function, but can be expressed in terms 
of the error function (or an integral of a Gaussian function) which is given by 
the formula [2]

That is,

Numerical Solution of Example 2 by its graph

Here, we use the preceding solution of Example2 to analyze the behavior of 
the solution from its graph which might be sketched using MATLAB program 
and use the following MATLAB code and obtain Fig. 4 below.

syms x 
E1=50*(erf((1-x)/(2*sqrt(0.00000000001)))-erf((-1-x)/
(2*sqrt(0.00000000001)))); % evaluate the %function value 
E2=50*(erf((1-x)/(2*sqrt(1/10)))-erf((-1-x)/(2*sqrt(1/10)))); 
E3=50*(erf((1-x)/(2*sqrt(1/2)))-erf((-1-x)/(2*sqrt(1/2)))); 
E4=50*(erf((1-x)/(2*sqrt(1)))-erf((-1-x)/(2*sqrt(1)))); 
E5=50*(erf((1-x)/(2*sqrt(10)))-erf((-1-x)/(2*sqrt(10)))); 
ezplot(E1); % draw the curve 
hold on; % To reserve current axis 
ezplot(E2); 
hold on; 
ezplot(E3); 
hold on; 
ezplot(E4); 
hold on; 
ezplot(E5); 
hold off; 
X=-6:0.05:6; % specify the vector with a step-size of 0.05 
E1X=double(subs(E1,x,X)); % To evaluate symbolic expression numerically 
E2X=double(subs(E2,x,X)); 
E3X=double(subs(E3,x,X)); 
E4X=double(subs(E4,x,X)); 
E5X=double(subs(E5,x,X)); 
plot(X,E1X,'r-.pentagram',X, E2X,'k',X,E3X,'c',X, E4X,'b',X, E5X,'--'); % 
To produce a %multicolored graph that indicates the difference between 
E1,E2, E3, E4 and E5 
title('Fig.4: Solution u(x,t) of Example 2'); 
legend('t=0','t=1/10','t=1/2','t=1','t=10'); 
xlabel('x'); 
ylabel('u(x,t)'); 
grid % To add grids to the curve

Figure 4 shows the temperature distribution in Example 2 at various values of 
. The graphs show that for small values of t, the temperature in the bar close 

to the initial temperature distribution, and as  increases, the temperature 
spreads through the bar and eventually approximate to 0 (or reaches the 
equilibrium temperature of 0 ).
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Figure 4: Solution u(x,t) of Example 2.

Conclusion

Many physical phenomena that interrelated to temperature distribution can 
be modeled using one dimensional heat equation as we have seen in this 
paper. In many cases analytical solutions are not enough to visualize the 
behavior of the solutions. Thus, we might depend on numerical solutions 
to obtain more information on the inherent problems. In this paper we 
have observed how to derive and solve one dimensional heat equation. 
Furthermore, by using MATLAB program we have provided the tangible 
understanding on the examples raised in the paper.
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