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Abstract
A decade before the discovery of non-coding transcripts, approximately 98% of the human genome was known 

as “transcriptional noise” or “junk DNA”. However, with the recent findings, non-coding transcripts are continuously 
turning into functional non-coding RNAs (ncRNA). NcRNAs comprise multiple classes of RNA transcripts that are not 
transcribed into proteins but have shown to regulate the transcription, stability, or translation of protein-coding genes 
in the mammalian genome. Nowadays the most studied ncRNAs are called miRNAs. They have been involved in the 
biogenesis and development of cancer. More recently, long non-coding RNAs (lncRNAs) were discovered and they 
have been shown not only to play a role in transcriptional and translational regulation, but also be involved in several 
diseases including cancer. LncRNAs are RNA transcripts longer than 200 nucleotides that do not encode proteins. The 
accumulating body of evidence suggests that lncRNAs play important roles in a variety of biological processes. They 
have been reported to be altered in many pathological states including cancer. LncRNAs with oncogenic functions 
(we may call; OncoLncs) were reported to be overexpressed in cancer cells and involved in the hallmarks of cancer 
including sustained proliferation, invasion, and metastasis. The field of regulatory RNAs is continuously growing 
especially the lncRNAs. Thus, in this comprehensive review, we discussed the advances on OncoLncs field in the 
malignant transformation of cancer and the therapeutics opportunities.
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Introduction
Cancer is a group of diseases result from survival of defective 

cells and uncontrolled cell proliferation [1]. In contrast, normal cells 
have developed multiple mechanisms to efficiently and coordinately 
regulate cell division, differentiation, and cell death processes 
[1]. Additionally, several molecular mediators are involved in the 
regulation of proliferation and differentiation of cells by turning genes 
on and off [1]. Deregulation of oncogenes and tumor suppressor genes 
that have been shown to be involved in the physiological cellular 
processes including regulation of cell cycle and differentiation, forms 
the molecular basis of carcinogenesis [1]. Cancer cells, unlike normal 
cells, sustain proliferative signaling to proliferate in an uncontrolled 
way through various mechanisms [1]. The production and release of 
growth promoting factors is kept in balance in normal cells in order 
to maintain the population size stable. On the other hand, cancer cells 
have deregulated expression of these factors. As cancer cells can produce 
their own growth promoting factors, they can also stimulate the cells 
in the tumor microenvironment to produce more growth promoting 
factors. Furthermore, mutations in signaling pathways, such as B-Raf 
and Ras, can result in sustain uncontrolled proliferative signaling [1-5]. 

In fact, cancer arises from a series of genetic abnormalities. Such 
genetic abnormalities in individual genes lead to deregulation of a 
gene function. Defects in genes involved in the formation of cancers 
may either cause hyper- or hypo-activation and these genes are called 
oncogenes and tumor suppressor genes, respectively [3]. Thanks to the 
advance of high-throughput DNA sequencing methods, many somatic 
mutations have been identified in oncogenes and tumor suppressor 
genes in human tumors. Identified mutations was shown to be 
frequently associated with the increased production of growth factors 
and their receptors [6]. Besides growth factors, mutations in genes that 
control various cellular processes including proliferation, angiogenesis, 
and cell survival were also identified [7]. Among intracellular signaling 
pathways, epidermal growth factor receptor (EGFR) is the most 
abundant and widely reported [7]. EGFR is a receptor tyrosine kinase 
and member of the human epidermal growth factor receptor HER-erbB 
family [7]. EGFR was shown to be associated with the pathobiology of 

several types of metastatic tumors [7]. For instance, in colorectal cancers 
(CRC), mutations in EGFR gene are not frequently observed. However, 
mutations in Kirsten rat sarcoma viral oncogene homolog (KRAS) 
or Murine Sarcoma Viral (V-Raf) Oncogene Homolog B1 (BRAF), 
which are important members of MAPK pathway, are more abundant 
and observed in 32–37% and in 10–17% of the cases, respectively. 
Mutations in the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase, 
Catalytic Subunit Alpha (PI3KCA) gene encoding the catalytic subunit 
of the PI3K are also abundant and were detected in 15% of patients 
with CRC [8-11]. Oncogenic effect of KRAS protein results from the 
deregulation of Ras GTPase negative feedback mechanism [8-11].

Besides, many genetic abnormalities also contribute to development 
of cancer [12]. In this concept, non-coding RNAs have gained much 
attention by the scientific community. Among non-coding RNAs, 
miRNAs are well reported in cancer. More recently, the role of long non-
coding RNAs is rapidly emerging in cancer and significant involvement 
of these non-coding RNAs in the growth, invasion, and metastasis of 
cancer has been reported already. 

Previously, we all believed that 98% of the human genome was 
“junk-DNA”. By the completion of the Human Genome and ENCODE 
projects, this previously believed phenomenon disappeared and now 
we know that the majority of human genome is encoded into functional 
transcripts [13]. Accordingly, such functional transcripts were termed 
as non-coding RNAs (ncRNAs). To date, by using high-throughput 
approaches such as deep sequencing methods, several non-coding RNA 
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molecules were discovered [14]. Yet, there are many of them remaining 
to be discovered. Moreover, growing evidences suggest that these newly 
found transcripts play a variety of roles in complex pathologic states, 
including cancer. Identification and characterization of ncRNAs are 
of great importance to illuminate the intricate molecular mechanisms 
undergoing in living cells [15,16].

Although there are several classification parameters for the non-
coding RNAs such as function, genomic localization, and expression, 
they are generally classified according to their sizes. NcRNAs longer 
than 200 nt are called long ncRNAs (lncRNA) while non-coding RNAs 
smaller than 200 nt are called small non-coding RNAs (sncRNA), 
accordingly [17]. Small non-coding RNAs include: microRNA 
(miRNA), short interfering RNAs (siRNAs), piwi-interacting RNAs 
(piRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs 
(snoRNAs) subtypes. Long non-coding RNAs include: ribosomal 
RNA (except 5S rRNA and 5.8S rRNA), antisense RNA (asRNA), long 
intergenic non-coding RNA (lincRNA), and competing endogenous 
RNA (ceRNA) [18,19]. 

In this particular review we aimed to discuss the impact of 
OncoLncs, oncogenic lncRNA frequently upregulated in cancer, in the 

malignant transformation of cancer and their potential therapeutic use 
in cancer therapy. 

Long non-coding RNAs (lncRNA)

LncRNAs transcripts are longer than 200 nt in length. LncRNA 
transcripts are known to be transcribed by RNA polymerase II. Similar 
to protein coding genes, they undergo 5’capping, 3’polyadenylation 
and splicing modifications. After these modifications, lncRNA can be 
released and transported to cytoplasmic locations according to their 
functions [20]. LncRNAs can be classified in several categories according 
to their genomic localization, interactions with other transcripts, 
regions overlapping with protein coding genes, regions located within 
the introns of protein coding genes, and anti-sense orientation to genes 
[21-25]. Additionally, a lncRNA transcript can be seen in either one or 
several of these categories. Beside from these, lncRNA can be classified 
according to their functions. For example; enhancer-RNAs (eRNAs) 
were shown to interact with enhancer regions [26], and activating 
ncRNAs (ncRNA-a) were reported to have enhancer-like functions. 
Globally, lncRNAs were reported to play crucial roles in the regulation 
of various cellular processes through modulating activation, inhibition, 
transcription splicing, degradation, and translation of mRNAs [27,28].

Figure 1: Graphical representation of interaction between OncoLncs and various molecular targets and their role in the multistep development of cancers. LncRNAs 
are shown to interact with mRNAs, miRNAs, proteins and DNA. Also, involvement of OncoLncs in the cell proliferation, metastasis, invasion, and tumor angiogenesis. 
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The roles of lncRNAs in cancer

As we all know cancer is a genetic disease formed by the accumulating 
mutations in oncogenes and tumor suppressor genes. A mass of indication 
suggests that lncRNAs play significant oncogenic roles in the malignant 
transformation of cancers [29-31]. Previous studies reported that lncRNAs 
molecules highly deregulated in several types of cancer (Tables 1 and 2). 

LncRNAs in cancer progression

Unlike normal cells, growth promoting signaling is constantly 
turned on in cancer cells for continuous uncontrolled growth [32]. 
A growing body of evidence suggests that several lncRNAs increases 
the proliferation of cancer cells. Aberrant expression of these lncRNAs 
was shown to be associated with growth of cancer cells [32]. Of these 

OncoLncs Full name Genomic 
location Type of lncRNA

MALAT1 Metastasis-Associated Lung Adenocarcinoma Transcript 1 11q13.1 lncRNA
CCAT1 colon cancer associated transcript 1 8q24.21 lncRNA
CCAT2 colon cancer associated transcript 2 8q24.21 lncRNA
CCAT1-L CCAT1, the Long isoform 8q.24 lncRNA
HOTAIR HOX Antisense Intergenic RNA 12q13.13 lincRNA, asRNA
HOTTIP HOXA distal transcript antisense RNA 7p15.2 NAT, asRNA
H19 imprinted maternally expressed transcript 11p15.5 miRNA primary transcript
CAHM colon adenocarcinoma hypermethylated (non-protein coding) Chr:6 lncRNA
XIST X inactive specific transcript Xq13.2 lncRNA
TUG1 Taurine up-regulated 1 22q12.2 lncRNA
CNDRE colorectal neoplasia differentially expressed 16q12.2 lncRNA
UCA1 urothelial carcinoma associated 1 19p13.12 lncRNA
LncRNA-ATB long noncoding RNA (lncRNA) activated by transforming growth factor (TGF)-β lncRNA
LincRN-RoR long intergenic non-protein coding RNA, regulator of reprogramming 18q21.31 lincRNA
Loc554202 MIR31 host gene 9p21.3 miRNA primary transcript
LINC00472 long intergenic non-protein coding RNA 472 6q13 lincRNA
BCAR4 breast cancer anti-estrogen resistance 4 16p13.13 NAT, asRNA
SPRY4-IT1 SPRY4 intronic transcript 1 5q31.3 lncRNA
LSINCT5 long stress-induced non-coding transcript 5 5p15.33 lncRNA
GHET1 gastric carcinoma proliferation enhancing transcript 1 7q36.1 lncRNA
MALAT2 Metastasis-Associated Lung Adenocarcinoma Transcript 2 lncRNA
PVT1 Pvt1 oncogene (non-protein coding) 8q24 lncRNA
ANRIL CDKN2B antisense RNA 1 9p21.3 NAT, asRNA
SUMO1P3 Small ubiquitin-like modifier (SUMO) 1 pseudogene 3 Pseudogene
ncRAN non-coding RNA expressed in aggressive neuroblastoma 17q25.1 lncRNA
SchLAP1 SWI/SNF complex antagonist associated with prostate cancer 1 2q31.3 lincRNA
PCAT1 prostate cancer associated transcript 1 8q24.21 lncRNA
PCAT5 prostate cancer associated transcript 5 10p11.21 lincRNA
PCA3 prostate cancer associated 3 9q21.2 Overlapp 
PCGEM-1 PCGEM1, prostate-specific transcript 2q32 lincRNA
CTBP1-AS CTBP1 antisense RNA 4p16.3 asRNA
HULC hepatocellular carcinoma up-regulated long non-coding RNA 6p24.3 lncRNA
HNF1A-AS HNF1A antisense RNA 1 12q24.31 asRNA
AFAP1-AS1 AFAP1 antisense RNA 1 4p16.1 asRNA
LINC01207 long intergenic non-protein coding RNA 1207 4q32 lincRNA
SOX2OT SOX2 overlapping transcript 3q26.33 Overlapp lncRNA
LINC00635 long intergenic non-protein coding RNA 635 3q13.12 lincRNA
HIF1A-AS1 HIF1A antisense RNA 1 14q23.2 asRNA
DLX6-AS1 DLX6 antisense RNA 1 7q21.3 asRNA
RGMB-AS1 RGMB antisense RNA 1 5q21.1 asRNA
LINC01133 long intergenic non-protein coding RNA 1133 1q23.2 lincRNA
AK001796 MIR4435-2 host gene 2q13 miRNA primary transcript
BCYRN1 brain cytoplasmic RNA 1 2p21 lincRNA
SNHG1 ncRNA small nucleolar RNA host gene 1 11q12.3 small nucleolar RNA primary transcript
SCAL1 lung cancer associated transcript 1 5q14.3 lincRNA
ZFAS1 ZNFX1 antisense RNA 1 20q13.13 NAT, asRNA
PANDAR promoter of CDKN1A antisense DNA damage activated RNA 6p21.2 NAT, asRNA
DANCR differentiation antagonizing non-protein coding RNA 4q12 lncRNA
OR3A4 olfactory receptor family 3 subfamily A member 4 17p13.3 pseudogene

Table 1: OncoLncs have been reported in cancer.
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lncRNAs, PCAT-1 has been shown to be overexpressed in prostate 
cancer and its overexpression was significantly associated with increased 
cell proliferation [32]. In addition, PCGEM-1 is another lncRNA 
molecule with significant growth promoting effects that was identified 
to be prostate cancer specific and was shown to be up-regulated in 
prostate cancer tumors [29-31]. Furthermore, several OncoLncs such 
as HOTAIR, MALAT1, ncRAN, and CCAT1 were reported to increase 
the proliferation of cancer cells [29-31]. 

The function of lncRNAs in epigenetic modifications

lncRNAs play key roles in epigenetic modifications [33]. LncRNAs 
were shown to interact with chromatin remodeling enzymes and 
proteins, and this interaction results in activation/inactivation of target 
genes [33]. One of the best examples that show the role of lncRNAs in 
epigenetic regulation is the X-inactive-specific transcript (XIST). XIST 
transcript is the major effector involved in the inactivation of one of two 
X chromosomes for the dosage compensation in females. XIST is an 
lncRNA transcribed from the inactive X chromosome [34]. XIST binds 
directly to PRC2, which is responsible for H3K27me3 methylation, and 
allows the inactivation of one X chromosome [34]. HOTAIR lncRNA 
also interact with the PRC2 and triggers heterochromatin formation in 
some specific genomic regions and allows epigenetic control of genes 
located in those regions [35]. In addition to these, H19 is another 
lncRNA that is shown to participate in epigenetic modifications, H19 
knockdown activates SAHH, leading to increased DNMT3B-mediated 
methylation of an lncRNA-encoding gene Nctc1 within the Igf2-H19-
Nctc1 locus [36]. 

LncRNAs in cancer invasion and metastasis

One of the most important distinguishing characteristics of cancer 
cells is their capacity to trigger invasion and metastasis processes [1]. 
Due to the fact that cancer cells must acquire some morphological 
changes to amend their interactions with other cells and the 
extracellular environment (ECM-extracellular matrix) [1]. The series 

of genetic modifications, which are characterized by the loss of several 
cell adhesion molecules for the invasion and metastasis of cancer cells, 
is known as the epithelial to mesenchymal transition (EMT) program 
[1,37]. MALAT1 is one of the first lncRNA shown to be associated with 
metastasis of cancers. It was first described in metastatic lung cancer 
by its significant up-regulation. Later, MALAT1 was reported to be 
involved in the invasion and metastasis of several other types of cancers 
[38]. Subcellular localization of MALAT1 was to the nucleus and nuclear 
speckles [38]. It is implicated as an important regulator in the splicing of 
mRNAs [39]. Moreover, several of lncRNAs such as HOTAIR, CCAT1, 
HULC, UCA1, and H19 were shown to be associated with metastasis of 
cancer. Taken together, these findings prove that alteration of lncRNAs 
play crucial roles in the metastatic development of cancers. 

Furthermore, DNA-interacting lncRNAs can promote mRNA 
transcription by activating transcription factors and mediating 
demethylation of promoter regions of transcription factors [23,40,41]. 

Moreover, lncRNAs can interact with another lncRNAs. In 
addition, lncRNAs can be transcribed from the anti-sense strand of 
protein coding genes, accordingly named natural antisense transcripts, 
or NAT, and regulating the expression of that gene [42]. Also, lncRNAs 
called 1/2-STAU1-binding site RNAs were reported to be involved in 
the transactivation of Staufen 1 (STAU1)-mediated messenger RNA 
decay (SMD) [43]. 1/2-STAU1-binding site RNAs of TINCR, MALAT1, 
and GHET1 were reported to respectively bind to Kruppel-like factor 
2 (KLF2) [44,45], serine/arginine splicing factors (SF2/ASF) [46], and 
insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) in 
SMD [47]. 

Additionally, miRNAs regulate gene expression at the 
posttranscriptional level by mediating mRNA degradation through 
RNA induced silencing complex (RISC). Several studies suggest that 
some lncRNAs are the precursors of miRNAs and/or some interact 
with miRNAs [48,49]. These miRNA precursor lncRNAs are involved 
in the degradation of mRNAs and include examples such as H19, 

OncoLncs Target gene Cancer process Clinical findings Ref

MALAT1 PI3K-AKT pathway, EZH2, 
PCDH10, ZEB2, AKAP-9 EMT, invasion, metastasis, angiogenesis overall survival, lymph node metastasis [67,90, 145-149]

CCAT1 ERK/MAPK pathway, c-Myc, 
E-cadherin, N-cadherin, BRD4 invasion, metastasis, apoptosis, cell cycle clinical stage, lymph nodes metastasis, survival 

time, differentiation grade, TNM stage
[57,61,66, 70,82, 
150,151]

CCAT2 WNT signaling, MYC
cell growth, tumor formation, cell 
proliferation, tumor growth, metastasis, 
invasion

lymph node metastasis, clinical stage, invasion, 
overall survival, distal metastasis [59,152-157]

HOTAIR c-Myc, TGF-β, type I collagen, 
osteopontin, HER2

Tumor growth, invasion, metastasis, EMT, 
cell proliferation, 

TNM stage, overall survival, lymph node 
metastasis, poor prognosis, drug resistance 

[35, 65, 123, 
125, 127, 128, 
158-160]

HOTTIP HOXA genes cell proliferation, colony formation, cell cycle 
arrest, apoptosis, tumor growth

clinical stage, distal metastasis, poor prognosis, 
overall survival

[136, 137, 161-
164]

H19 TGFBI, AKT2, c-Myc, miR-138, 
miR-200a

EMT, cell cycle, cell proliferation, invasion, 
metastasis clinical stage, tumor size, overall survival [48,54, 165,166]

PVT1 MYC, several apoptotic and anti-
apoptotic genes, TSHR cell proliferation, migration, invasion lymph node metastasis, histological grade, 

clinical stage, poor prognosis [87-89, 167-170]

PCAT c-Myc, BRCA2 cell proliferation, invasion, metastasis, 
migration

clinical stage, lymph node metastasis, poor 
prognosis [32,105-107,171]

UCA1
miR-193a-3p, c-Myc, hsa-miR-
145-ZEB1/2-FSCN1 pathway, 
FGFR1/ERK signaling pathway

cell growth, metastasis, invasion, cell 
proliferation, colony formation

differentiation, tumor size, invasion depth, clinical 
stage, overall survival, [97-99, 172-177]

ncRAN MYCN cell proliferation, migration, invasion stage, tumor origin, differentiation [102,103, 178]
Loc554202 caspase cell proliferation, invasion, migration pathologic stage and tumor size [50,52]

HULC SPHK1, IGF2BP1 cell proliferation, invasion, metastasis, clinical stage, distant metastasis, overall survival, 
tumor size, vascular invasion.

[133-135, 179-
182]

DANCR CTNNB1 stemness features, intra-/extraliver 
colonization

clinical stage, histologic grade, lymph node 
metastasis, overall survival [183, 184]

Table 2: The role of OncoLncs and their target genes in various cancer processes.
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ANRIL, Loc554202, and AK001796, which have been shown to have 
carcinogenic effects in various types of malignancies [50-54]. In 
addition, lncRNAs are also precursors of small nucleolar RNAs, and 
small nucleolar RNA host gene 1 (SNHG1) is one example [55].

HOTTIP lncRNA expression was remarkably increased in GC 
tissues and cell lines compared with that in the normal control. 
Clinicopathological analysis revealed that high HOTTIP expression 
correlated with larger tumor size, deeper invasion depth, positive lymph 
node metastasis, advanced TNM stage, and shorter overall survival. 
Multivariate regression analysis identified HOTTIP overexpression 
as an independent unfavorable prognostic factor in GC patients. 
Moreover, HOTTIP down regulation by si-HOTTIP transfection 
impaired GC cell proliferation, promoted cell apoptosis, and reduced 
cell invasion and migration [56].

Likewise, lncRNAs also interact with RNA binding proteins that can 
regulate their functions. Moreover, LncRNAs can directly bind to target 
genes and increase or decrease their expressions. For example, CAT1, 
CCAT2, CCAT1-L, PCAT1, and PVT1 lncRNA molecules encoded from 
the MYC genomic desert (8q24 locus) and involved in the regulation MYC 
oncogene itself [57-61]. Similarly, PCA3 lncRNA has a negative trans-
dominant oncogenic role that down-regulates an unrecognized tumor 
suppressor gene, PRUNE2  (a human homolog of the Drosophila prune 
gene) thereby promoting malignant cell growth [62,63]. 

OncoLncs among the Cancer Types
lncRNAs are frequently overexpressed and associated with the 

clinic-pathological characteristics of cancers [64]. Accordingly, 
lncRNAs that are significantly up regulated in cancers are oncogenic 
lncRNAs and may be called OncoLncs. In the following section the 
roles of OncoLncs in the development and progression of cancers are 
discussed (Table 3). 

Colorectal cancer (CRC)

In colorectal tumorigenesis, several OncoLncs were identified 
with important regulatory functions including RNA transcription, 
post-transcriptional modifications, and chromatin remodeling. Recent 
studies revealed that aberrant expression of lncRNAs were shown to 
influence a number of oncogenes and tumor suppressor genes and 
eventually participate in CRC development. HOX Transcript Antisense 
RNA (HOTAIR) [65], Colon Cancer Associated Transcript (CCAT) 
family (CCAT1, CCAT2, CCAT1-L) [59,60,66], and Metastasis-
Associated Lung Adenocarcinoma Transcript 1 (MALAT1) [67] 
were reported to have oncogenic functions and to be frequently up-
regulated in CRC. Recently, several lncRNAs were identified in the 
8q24 human chromosomal region. Oncogenic MYC gene is also 
encoded from this region and reported to be regulated in multiple 
levels including enhancers, transcription factors, and chromatin state 
[68]. CCAT1 is a lncRNA 2600 nucleotide in length and encoded from 
the same locus with MYC. CCAT1 was reported as an highly specific 
marker in colorectal cancer and associated to the clinicopathological 
characteristics of CRC patients [68,69]. Besides, CCAT1 has been 
reported to have important roles in the invasion and metastasis of 
CRC [57,70]. In addition, a 320 neucleotide long novel transcript 

lncRNA Function in cancer Type of cancer Ref

MALAT1
MALAT1 was shown to be upregulated in various cancer types and 
associated with the cell proliferation, tumor growth, and metastasis of 
cancers. 

Colorectal cancer, breast cancer, gastric cancer, 
hepatocellular carcinoma, osteosarcoma, lung cancer, cervical 
cancer, prostate cancer, clear cell kidney carcinoma, bladder 
cancer, esophageal squamous cell carcinoma

[185], [186],
[90], [187], [145], 
[188], [146], [147], 
[148], [173], [189]

CCAT1
CCAT1 was shown to be involved in the development of various type of 
cancers, especially the CRC. Increased CCAT1 expression was associated 
with the cell proliferation, invasion, and migration.

Colorectal cancer, breast cancer, hepatocellular carcinoma, 
gallbladder cancer, gastric cancer

[57, 66, 70], [150], 
[151], [190], [61]

CCAT2
CCAT2 was shown to be involved in the regulation of MYC oncogene. Also, 
CCAT2 plays role in the WNT signaling. 

Colorectal cancer, cervical squamous cell cancer, breast 
cancer, esophageal squamous cell carcinoma, gastric cancer, 
non-small cell lung cancer

[59], [153], [152], 
[157], [156], [154]

ANRIL
ANRIL was up-regulated in various types of cancers. Increased ANRIL 
expression was associated with the cell proliferation, invasion, and 
migration. 

Colorectal cancer, bladder cancer, gallbladder cancer, 
non-small cell lung cancer, cervical cancer, hepatocellular 
carcinoma

[191], [81], [192], 
[193], [194]

HOTAIR
HOTAIR was reported as an important prognostic marker in cancers 
and higher expression was associated with the aggressive carcinogenic 
characteristics. 

Breast cancer, gastric cancer, hepatocellular carcinoma, 
colorectal cancer, gallbladder cancer, endometrial carcinoma, 
non-small cell lung cancer, pancreatic cancer, 

[35], [195], [196], 
[65], [123], [159], 
[128], [197], 

HOTTIP Expression levels of HOTTIP was found to be significantly higher in several 
types of cancers. 

Colorectal cancer, osteosarcoma, lung cancer, pancreatic 
cancer, hepatocellular carcinoma

[164], [163], [162], 
[161], [136]

H19 Dual functions of H19 was reported in cancers. Colorectal cancer, gastric cancer, non-small-cell lung cancer, 
esophageal cancer

[74], [165], [166], 
[198]

NcRAN Up-regulated in various cancer types. Colorectal cancer, neuroblastoma, bladder cancer [73], [102], [103]

UCA1
First identified in bladder cancer, and later found to be up-regulated in 
different types of cancers. Overexpression of UCA1 was associated with 
the cell proliferation, invasion, and migration of cancers. 

Bladder cancer, gastric cancer, breast cancer, cervical cancer, 
colorectal cancer, hepatocellular carcinoma, lung cancer, 
tongue squamous cell carcinoma, melanoma

[97-99, 176], [177], 
[199], [200], [172], 
[174]

PVT1 Up-regulated in various cancer types. Up-regulation of PVT1 was shown to 
promote cell proliferation and inhibit apoptosis. 

Gastric cancer, ovarian cancer, breast cancer, non-small-cell 
lung cancer, hepatocellular carcinoma, pancreatic cancer, 
thyroid cancer

[83, 85], [87], [169], 
[88], [167], [170]

PCAT-1 PCAT-1 upregulated in prostate tumors and various types of cancers. 
Prostate cancer, colorectal cancer, non-small-cell lung 
cancer, hepatocellular carcinoma, esophageal squamous cell 
carcinoma

[32], [104], [106], 
[105], [107]

PCA3
PCA3 is involved in the control of prostate cancer cell survival and 
frequently up-regulated in prostate cancers. Identified as strong predictive 
biomarker for prostate cancer diagnosis. 

Prostate cancer [63, 108], 

HULC
HULC was identified in HCC by its marked expression. Ectopic 
overexpression of HULC was associated with increased cell proliferation 
and tumor burden. 

Hepatocellular carcinoma, osteosarcoma, pancreatic cancer, 
gastric cancer 

[133-135], [181], 
[180], [182]

Table 3: Some of OncoLncs and their functions in cancer.
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was also identified from the same locus with CCAT1 and MYC-335 
region, called CCAT2 [59]. The expression of CCAT2 was found 
to be up regulated in invasion and metastasis of CRC and increased 
expression of this transcript was associated with increased MYC, miR-
17-5p, and miR-20a levels [59]. Also, an SNP (rs6983267) found in 
the CCAT2 was shown to be associated with the CCAT2 expression 
levels. Particularly, G allele was found to be increased CCAT2 gene 
[59]. Furthermore, another novel transcript 5200 nucleotide in length 
located 515 kb upstream to MYC was discovered. This transcript was 
named CCAT1-L (CCAT1, the Long isoform) and was shown to have 
regulatory functions in the transcriptional regulation of MYC [60]. 
Additionally, CCAT1-L was shown to promote long-range chromatin 
looping and knockdown of CCAT1-L was found to reduce long-range 
interaction between enhancer and promoter region of MYC [60].

Lnc34a lncRNA is enriched in  colon cancer  stem cells (CCSCs) 
and initiates asymmetric division by directly targeting the microRNA 
miR-34a to cause its spatial imbalance. Lnc34a recruits Dnmt3a via 
PHB2 and HDAC1 to methylate and deacetylate the miR-34a promoter 
simultaneously, hence epigenetically silencing miR-34a expression 
independent of its upstream regulator, p53. Lnc34a levels affect CCSC 
self-renewal and colorectal cancer (CRC) growth in xenograft models. 
Lnc34a is up regulated in late-stage CRCs, contributing to epigenetic 
miR-34a silencing and CRC proliferation [71].

GHET1 lncRNAs expression is significantly increased in the CRC 
samples compared with adjacent tissues. Furthermore, the cancer tissues 
had higher GHET1 mRNA levels than their matched adjacent tissues. 
GHET1 expression was also significantly increased in the CRC cell lines 
compared with human normal colon epithelial cells. Down-regulation 
of GHET1 mediated by shRNA suppressed the proliferation, cell cycle 
arrest, migration, and invasion of colorectal cancer cells in vitro. In 
addition, inhibition of GHET1 reversed the epithelial-mesenchymal 
transition in colorectal cancer cell lines. GHET1 has potential to be 
considered as a therapeutic target of colorectal cancer [72].

Colorectal Neoplasia Differentially Expressed (CRNDE) transcript 
was first identified in CaCo2 and HCT116 colon cancer cell lines using 
5’-RACE method [73]. CRNDE was reported to have ten splice variants 
and all of them (except CRNDE-d) were found to be up regulated in 
colon cancer biopsies [73]. 

Taurine Up-regulated Gene 1 (TUG1) has been also reported to 
be involved in the colorectal carcinogenesis. TUG1 was found to be 
elevated in primary tumor samples of CRC patients and colon cancer 
cell lines. In addition, TUG1 was shown to be associated with increased 
colony formation, migration, and invasion of colon cancer cell lines. 
In contrast, down-regulation of TUG1 was associated with the recued 
colony formation, migration, and invasion [74]. 135 lncRNAs are 
differentially expressed in HCT116, HCT8, and SW480 colorectal 
cancer cell lines. A 185-fold increase was reported in AK027294 lncRNA 
and its down-regulation was associated with reduced cell proliferation 
and migration, as well as increased apoptosis [75].

Gastric cancer

LncRNAs were also reported to be differentially expressed in gastric 
cancers, where they regulate important cellular signaling pathways 
including Notch, mTOR, NF-κB, and Wnt [76-78]. Gastric Carcinoma 
High Expressed Transcript 1 (GHET1) is one of the oncoLnc with 
increased expression levels in gastric cancer. Overexpression of this 
transcript was shown to be significantly correlated with tumor size, 
invasion, and poor outcome of gastric cancer patients [79]. Moreover, 
in gain-of-function and loss-of-function analysis of GHET1 while 

overexpression of GHET1 was associated with the increased cell 
proliferation, knockdown of this transcript was associated with the 
inhibition of cell proliferation in gastric cancer cell lines [79]. In 
addition, GHET1 was reported to have direct physical interaction with 
the insulin-like growth factor 2 binding protein 1 (IGF2BP1) mRNA in 
pull-down and immunoprecipitation assays. 

Previous studies have also reported that IGF2BP1 transcript 
physically interacted with c-Myc mRNA rescuing it from degradation 
[47]. Therefore, GHET1 is involved in the development of gastric 
carcinoma through mediating Myc mRNA stability and expression 
[79]. ANRIL (CDKN2B Antisense RNA 1) is another oncoLnc 3.8-kb in 
length and transcribed from opposite direction of INK4B-ARF-INK4A 
gene cluster. Elevated ANRIL expression was revealed to be interrelated 
with advanced Tumor, Node and Metastasis (TNM) Classification 
stage and increased tumor size [80]. Knockdown of ANRIL was also 
associated with a diminished cell growth in gastric cancer [80]. ANRIL 
knockdown decreased the expression of MDR1 and MRP1, both of 
which are MDR related genes; regression analysis showed that the 
expression of ANRIL positively correlated with the expression of MDR1 
and MRP1, respectively. Globally, knockdown of lncRNA ANRIL in 
gastric cancer cells inhibits the development of MDR, suggesting an 
efficacious target for reversing MDR in gastric cancer therapy [81]. 

CARLo-5 long non-coding RNA (renamed as CCAT1) is involved 
in the malignant transformation of gastric cancers. In particular, 
CARLo-5 was reported to be up-regulated in gastric cancers and 
silencing CARLo-5 resulted in G0/G1 cell-cycle arrest and induced 
apoptosis gastric cancer cells [82].

Also, lncRNA TINCR was shown to be aberrantly overexpressed in 
human squamous carcinomas. TINCR was found to be up-regulated 
and increased expression of this transcript was associated with the 
initiation and progression processes in gastric cancer [45]. While 
reduced expression of TINCR was correlated with the inhibition 
of cell proliferation, colony formation and promoted apoptosis, its 
overexpression stimulated increased cell proliferation in SGC7901 and 
BGC823 cells [45].

In gastric cancers, 88 differentially expressed lncRNAs that span the 
8q24 genomic locus have been described [83]. Among these lncRNAs, 
PVT1 (Plasma-cytoma Variant Translocation) is oncogenic and is 
localized to the same genomic region with MYC oncogene [83-85]. 
PVT1 was identified as a miRNA-coding gene [85]. MiR-205, -206, 
-207 are encoded miRNAs from the PVT1 gene [86]. 

In a study conducted in ovarian and breast cancer cell lines, 
silencing PVT1 resulted in higher apoptosis activation [87]. Also, 
increased PVT1 expression was associated with invasion and higher 
TNM stage of gastric cancer [88]. In addition, PVT-1 was shown to be 
overexpressed in patients resistant to cisplatin and cisplatin-resistant 
cells. Cisplatin treatment was reported to be more effective inducing 
apoptosis in gastric cancer cells transfected with PVT-1 siRNA [89]. 

Metastasis Associated Lung Adenocarcinoma Transcript 1 
(MALAT1) was one of the first identified members of lncRNAs with 
oncogenic functions. MALAT1 is also known as Nuclear-Enriched 
Abundant Transcript 2 (NEAT2) [38]. MALAT1 was reported to 
be highly expressed in gastric tumors and gastric cancer cell lines 
(SGC-7901, MKN-45 and SUN-16) [90,91]. Silencing MALAT1 was 
shown to inhibit invasion and migration capacity of MKN45 cells. 
Overexpression of MALAT1 was correlated with overexpression of 
SF2/ASF in the nucleolus. Knockdown of MALAT1 promoted G0/G1 
cell cycle arrest and impaired SGC-7901 cell proliferation [91]. Also, 
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increased expression of MALAT1 was significantly associated with  
poor prognosis of advanced stage gastric cancer patients [90]. 

In a different study, plasma levels of circulating lncRNAs in gastric 
cancer patients were determined. Interestingly, while the expression 
levels of H19 were significantly altered, expression changes of HOTAIR 
and MALAT1 were not significant when compared to control subjects 
[92]. Furthermore, MALAT2 was also reported to be differentially 
expressed in gastric cancer patients. MALAT2 overexpression was 
shown to be associated with advanced TNM stage. In addition, ectopic 
expression of MALAT2 was shown to induce migration of human GC 
SGC-7901 cells [93]. 

Olfactory Receptor, family 3, subfamily A, member 4 (OR3A4) 
lncRNA is elevated in gastric cancer tissues and associated with the 
invasion and lymphatic distal metastasis of patients. Moreover, ectopic 
expression of OR3A4 has been reported to stimulate cell proliferation, 
angiogenesis, metastasis, and tumorigenesis in vitro and in vivo [94].

Long Intergenic Non-Coding RNA 152 (LINC00152) is another 
transcript that was identified to have tumor promoter functions in 
gastric cancers. LINC00152 was reported to be frequently up-regulated 
and associated with the clinicopathological characteristics of gastric 
cancer patients as shown in different studies. Also, increased expression 
of LINC00152 was reported to increased proliferation of gastric cancer 
cells as revealed by gene set enrichment analysis. Moreover, ectopic 
LINC00152 expression was reported to promote proliferation of gastric 
cancer cells in vitro and in vivo xenograft models. However, reverse 
effect was observed in LINC00152 silenced cells. Indeed, LINC00152 
was shown to interact with Enhancer of Zeste Homolog 2 (EZH2) and 
fuel gastric cancer progression through silencing p15 and p21 [95]. In 
summary, these findings strongly suggest that lncRNAs play key roles 
in the gastric cancer progression through multiple mechanisms and 
these RNA molecules can be novel therapeutic targets in gastric cancer 
therapy.

Small Ubiquitin-like Modifier (SUMO) 1 Pseudo gene 3, 
(SUMO1P3) is a pseudogene-expressed oncoLnc and its overexpression 
has been reported in gastric cancer [96]. 

Bladder cancer

One of the first lncRNAs discovered in bladder cancer is Urothelial 
Carcinoma-Associated 1 (UCA1). UCA1 was identified in BLS-211 
and BLZ-211 bladder transitional cell carcinoma (TCC) cell lines 
using 3’ and 5’ RACE methods [97]. Ectopic expression of UCA1 
was associated with increased tumorigenic characteristics in BLS-211 
human bladder cancer cells. In addition, tumorigenic capacity of BLS-
211 cells was reported to be enhanced by increased UCA1 expression 
in nude mice [97]. A significant correlation between UCA1 and miR-
196a was also reported and expression of these inversely associate with  
p27kip1, which is frequently down-regulated in bladder cancer [98]. 
Not surprisingly, UCA1 overexpression was shown to promote gain 
of mesenchymal type of characteristics in bladder cancer cells by way 
of activating ZEB1 and ZEB2 transcription factors, activating in turn 
epithelial to mesenchymal transition program [99]. 

SUMO1P3 was also shown to be significantly overexpressed in 
bladder cancer tissues and its expression was well-correlated with the 
histological grade and TNM stage of bladder cancer patients. It has 
been shown that knockdown of SUMO1P3 reduced proliferative and 
migratory capacity and significantly induced apoptosis in bladder 
cancer cells. Postulating that SUMO1P3 can be taken into account in 
the future therapeutic attempts as a novel molecular target in bladder 
cancer therapy [100].

LOC572558 is one of the most deregulated lncRNAs in bladder 
cancer. A large cohort of human bladder cancer tissue samples with 
benign controls, as well as established human bladder cancer cell lines, 
has been examined for the expression of LOC572558. Using a high-
throughput phospho-proteome array, it has been identified proteins that 
were ectopic phosphorylated in bladder cancer cells where LOC572558 
expression was up regulated. In this study they also demonstrated that 
LOC572558 expression was markedly decreased in bladder cancer 
tissues and bladder cancer cell lines. Moreover, ectopic expression of 
LOC572558 inhibited cell proliferation and motility, induced S phase 
arrest of the cell cycle and promoted cell apoptosis in T24 and 5637 
bladder cancer cell lines. Further studies verified that overexpression 
of LOC572558 was associated with dephosphorylation of AKT, MDM2 
and phosphorylation of p53 protein. The data demonstrated that 
LOC572558 is a tumor suppressor and regulates the p53 signaling 
pathway in bladder cancer [101]. 

NcRAN is another novel OncolncRNA that was first described in 
neuroblastoma and was reported to be associated with the aggressive 
behavior of tumor cells and poor outcomes of patients [102]. Expression 
levels of ncRAN were also found to be increased in bladder cancers. In 
consistent with these, its expression was also reported to be elevated 
in aggressive bladder cancer cells. Ectopic expression of NcRAN was 
shown to be overexpressed tumorigenic characteristics of RT4 bladder 
cancer cells. Moreover, reducing the expression of ncRAN in 5637 cells 
diminished chemotherapeutic resistance [103]. 

Prostate cancer

OncoLncs play significant roles in the development of prostate 
cancers and several molecular targets with diagnostic, prognostic, 
and therapeutic potentials were identified. Encoding gene of Prostate 
Cancer-Associated ncRNA Transcripts 1 (PCAT-1) was initially 
postulated as a molecular biomarker in prostate cancers [32]. PCAT-1 
was shown to be involved in the metastasis of prostate cancer tumors 
and associated with increased cell proliferation in these tumors [32].

Recent studies showed that PCAT-1 have significant impact on the 
development of various of types of cancer including colorectal cancer 
[104], hepatocellular carcinoma [105], non-small cell lung cancer 
(NSCLC) [106], and esophageal squamous carcinoma [107]. 

Besides PCAT-1, Prostate-specific transcript 1 (PCGEM1) 
is another prostate cancer specific OncoLnc and revealed to be a 
androgen-dependent non-coding RNA. PCGEM1 was shown to be 
markedly expressed in prostate cancer tumors [31]. Ectopic expression 
of PCGEM1 increased the cell number and colony forming potential 
of LNCaP and NIH3T3 prostate cancer cell lines [30]. Moreover, 
this ectopic expression interfered with doxorubicin (DOX) induced 
apoptosis [29]. 

Furthermore, significant up regulation of Differential Display 
Code 3 (PCA/DD3) lncRNA was reported in prostate cancer [108]. In 
clinical trials, PCA3 is accepted as an early sign of prostate cancer and 
considered as an important risk factor in addition to serum PSA levels. 
Studies also reported that expression of PCA3 is elevated in prostate 
cancer cell lines and tumor samples [109]. Thus, accumulating findings 
suggest that PCA3 is a most specific prostate cancer biomarker [110-
114]. PCA3 was identified as an intronic long noncoding RNA in the 
PRUNE2 gene locus and was shown to regulate expression of PRUNE2. 
Also, PCA3 and PRUNE2 were reported to have inverse relationship in 
tumor formation in vivo tumor models. Thus, PRUNE2 was recently 
postulated as a novel tumor suppressor in prostate cancer cells [63]. 

The expression of lncRNAs in several prostate cancer exosomes and 
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their parental cell lines has been characterized. In this study they show 
that certain lncRNAs are enriched in cancer exosomes with the overall 
expression signatures varying across cell lines. These exosomal lncRNAs 
are themselves enriched for miRNA seeds with a preference for let-7 
family members as well as miR-17, miR-18a, miR-20a, miR-93 and miR-
106b. The enrichment of miRNA seed regions in exosomal lncRNAs is 
matched with a concomitant high expression of the same miRNA. In 
addition, the exosomal lncRNAs also showed an over representation 
of RNA binding protein binding motifs. The two most common motifs 
belonged to ELAVL1 and RBMX. Given the enrichment of miRNA and 
RBP sites on exosomal lncRNAs, their interplay may suggest a possible 
function in prostate cancer carcinogenesis [115].

Lastly, LOC400891 is another oncoLnc identified to have relevance 
in the development of prostate cancers. LOC400891 was reported to be 
overexpressed in prostate tumors and cancer cell lines and Kaplan-Meier 
analysis showed that PCa patients with high LOC400891 expression 
had a significantly shorter biochemical recurrence-free survival time 
than those with low LOC400891 expression and associated with the 
clinical characteristics of patients [116]. Functional analysis revealed 
that silencing of LOC400891 inhibits cell proliferation, migration, and 
invasion capabilities of prostate cancer cells [116].

Breast cancer 

Several lncRNAs were implicated to have significant roles in 
developing breast tumors, some of the examples discussed here. 
LincRNA-RoR was discovered to be one the oncoLnc which is 
significantly overexpressed in breast cancer tumors including triple-
negative breast cancer (TNBC) [117]. lincRNA-RoR was first identified 
to be involved in the regulation of pluripotency [118]. Its ectopic 
expression was also shown to activate EMT program and increase 
migration and invasion of mammary epithelial cells. In contrast, 
knockdown of lincRNA-RoR was associated with the less breast tumor 
burden and metastasis in vivo [119]. 

A well reported OncLnc in breast carcinogenesis is MALAT1. 
Aberrant expression of MALAT1 has been reported in breast cancer. 
Silencing of MALAT1 in breast cancer cells significantly reduced 
cell proliferation and cell cycle progression both in vitro and in vivo. 
Besides, tumor suppressor miR-124, was identified as one of the targets 
of MALAT1 as overexpression of MALAT1 inhibit miR-124 expression 
in breast cancer [120].

Moreover, it has been identified lncRNA in non-homologous end 
joining (NHEJ) pathway 1 (LINP1), which is overexpressed in human 
triple-negative breast cancer. It was found that LINP1 enhances repair 
of DNA double-strand breaks by serving as a scaffold linking Ku80 
and DNA-PKcs, thereby coordinating the NHEJ pathway. Importantly, 
blocking LINP1, which is regulated by p53 and epidermal growth factor 
receptor (EGFR) signaling, increases the sensitivity of the tumor-cell 
response to radiotherapy in breast cancer [121]. 

Lung cancer

HOTAIR is transcribed from the antisense of HoxC gene 
and is 2,158 nucleotides in length. It is reported to be spliced and 
polyadenylated and comprises 6 exons [122]. HOTAIR was reported 
as an important prognostic factor in several types of malignancies 
[123]. Distinctive higher expression of HOTAIR was found in small 
cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) [124]. 
HOTAIR regulate genes involved in differentiation, proliferation, 
and invasion of lung cancer cells [124]. HOXA5 gene was listed as an 
important target of HOTAIR due its pivotal roles in the lung cancer 
formation [125]. Elevated expression of HOTAIR was also reported to 

be associated with the poor clinical outcomes and poor survival of lung 
cancer patients [126,127]. Moreover, significant correlation between 
HOTAIR expression and brain metastasis in NSCLC patients has been 
reported [128]. 

Knockdown of TATDN1-1 by shRNA significantly inhibited cell 
proliferation, adhesion, migration and invasion in 95D cells. Further 
mechanism study showed that TATDN1 knockdown suppressed the 
expression of E-cadherin, HER2, β-catenin and Ezrin. Moreover, 
knockdown TATDN1 also inhibited tumor growth and metastasis in 
a 95D mouse model in vivo by inhibiting β-catenin and Ezrin [129].

The lncRNA PVT1 is 1716 nt in length and located in the 
chr8q24.21 region, which also contains the myelocytomatosis (MYC) 
oncogene. Previous literature demonstrated that MYC promotes PVT1 
expression in primary human cancers. However, the expression pattern 
and potential biological function of PVT1 in non-small cell lung cancer 
(NSCLC) it was not clear yet. Until was demonstrated that PVT1 was 
up-regulated in human NSCLC tissues. High expression of PVT1 was 
associated with a higher TNM stage and tumor size, as well as poorer 
overall survival. Functional analysis revealed that knockdown of PVT1 
inhibited NSCLC cell proliferation and induced apoptosis both in 
vitro and in vivo. RNA immunoprecipitation (RIP) and Chromatin 
immunoprecipitation (ChIP) assays demonstrated that PVT1 recruits 
EZH2 to the large tumor suppressor kinase 2 (LATS2) promoter and 
represses LATS2 transcription. Ectopic expression of LATS2 increased 
apoptosis and repressed LAD cell proliferation by regulating the 
Mdm2-p53 pathway [130]. 

SOX2 Overlapping Transcript (SOX2OT) was reported to harbor 
in the intronic region of the SOX2 gene locus [126]. SOX2OT4 and 
SOX2OT7 transcription variants of SOX2OT oncoLnc were reported 
to be significantly up-regulated in NSCLC tumors. SOX2OT silencing 
significantly decreased colony formation in lung cancer cells, yet 
not induced apoptotic cell death in these cells. Conversely, SOX2OT 
silencing was reported to induce cell cycle arrest at G2/M checkpoint 
and associated with reduced migration capacity [131,132].

Liver cancer
Highly Upregulated in Liver Cancer (HULC) is the novel transcript 

with prominent expression levels in hepatocellular carcinoma (HCC) 
and showing mRNA-resembling characteristics. SiRNA-mediated 
silencing of HULC impaired the expression of several genes in two 
different HCC cell lines. Indicating potential gene expression-regulating 
role of HULC at post-transcriptional level [133]. Furthermore, 
increased expression of HULC oncoLnc was significantly linked to 
positive hepatitis B (HBV) infection and associated with the higher 
Edmondson grades [134].

HULC is involved in tumor angiogenesis by targeting and increasing 
SPHK1 (Sphingosine Kinase 1) expression in HCC. HULC expression 
was shown to be well-correlated with the expression levels of SPHK1 
and the SPHK1 gene product, Sphingosine-1-Phosphate (S1P), in HCC 
[135]. 

Lastly, HOXA distal transcript antisense RNA (HOTTIP) was 
discovered from the HOXA locus and was reported to be targeted by miR-
125b [136]. Expression levels of HOTTIP were found to be significantly 
higher in patients with HCC and was shown to be involved in the HCC 
development by targeting its adjacent protein coding genes [137]. 

Lnc RNAs and Therapeutic Tools 
There have been major advances understanding LncRNAs and 

is clear their significant involvement in the development of cancer. 
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Moreover, it has been shown the prognostic value of several LncRNAs as 
well as their diagnostic and therapeutic potentials. More recently, many 
of the non-coding RNAs were shown to be novel molecular targets 
in cancer therapy due their strong predictive and specific expression 
patterns. LncRNAs have critical roles in cancer and regulating their 
functions and/or levels have shown promising anti-cancer effects. 
There are several possible approaches for targeting lncRNAs such as 
silencing, functional blockage, and structure disruption [138]. More 
recently, nucleic acid-based methods come up with targeting RNAs 
either by modulating the level of lncRNAs in cancer cells or modifying 
their structures [139]. In several types of cancers, knockdown of 
OncoLncs were shown to inhibit tumor progression and metastasis in 
cancer cells and tumor xenograft studies [140]. LncRNAs expression 
signatures either alone or in combination with other types of markers 
such as miRNAs, siRNAs, mRNAs, proteins, and small inhibitors 
have been used to predict outcome or treatment follow-up to develop 
the therapeutic care of cancer patients. Therefore, siRNA-mediated 
silencing of OncoLncs seems to be an important therapeutic strategy 
to fight against cancer. SiRNAs are complementary to their target 
lncRNAs, leading to their degradation in RISC complex, results in 
controlling the activity of these transcripts by decreasing their levels 
[141]. For instance, distal metastasis in breast cancer was reported to 
be diminished through siRNA-mediated silencing of HOTAIR [35]. 
Also, both miR-145 transfection and siRNA-mediated silencing of 
PCGEM-1 significantly reduced proliferation, invasion, and metastasis 
in prostate cancer cells [142]. In addition, similar to siRNA-mediated 
silencing, the use of complementary longer antisense oligonucleotides 
seems to be an alternative therapeutic strategy in cancer therapy. These 
longer antisense oligonucleotides are complementary to the target 
lncRNAs and promote their degradation by RNase H [141]. Besides 
OncoLncs, miRNA-based therapeutics has received overwhelming 
volume of attraction. In particular, miRNA mimics and inhibitors are 
highly attractive for novel therapeutic intervention to cancer therapy. 
Replacement of the down-regulated miRNA via miRNA mimic or 
depletion of the up regulated miRNA via miRNA inhibitors (Anti-
miRs) is a novel strategy [143]. The first miRNA-based medication is 
miR-34 mimics and replacement therapy to miR-34 tumor suppressor 
microRNA and is in phase I clinical trials [144]. All of these approaches 
may be adapted to target lncRNA transcripts.

lncRNA-based therapeutics have not been used for targeting 
lncRNAs in clinics yet, however there are three different clinical trials 
related to detect lncRNA levels in patients with Acute Pancreatitis, 
Chronic Kidney Disease, and triple-negative breast cancer. 

lncRNAs may play crucial roles in the regulation of many 
pathophysiological processes in cancer development and may be 
therapeutically targeted. In the near future, non-coding-based cancer 
therapeutics seems to be promising to fight against cancer and will be 
soon available to patients. 
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