

Oncogenic Signaling: Targets, Therapies, and Resistance

Katarina Jelinek*

Department of Applied Oncology, Prague Institute of Medical Studies, Prague, Czech Republic

Introduction

The complex landscape of oncogenic signaling pathways plays a crucial role in tumor initiation, progression, and metastasis. It discusses various key pathways like RTK/RAS/MAPK, PI3K/AKT/mTOR, and Wnt/β-catenin, emphasizing how dysregulation in these pathways drives oncogenesis. The article then explores current therapeutic strategies that target these specific pathways, including small molecule inhibitors and monoclonal antibodies, and discusses the challenges of drug resistance and the potential of combination therapies to overcome them [1].

The evolution of cancer treatment towards precision oncology focuses keenly on targeting specific oncogenic pathways. Advancements in molecular profiling allow for identifying personalized therapeutic targets, moving beyond traditional chemotherapy. This approach covers various mutated signaling pathways and their corresponding inhibitors, highlighting both successes and challenges in developing targeted therapies, particularly concerning drug resistance mechanisms and the need for combination strategies [2].

The Wnt/β-catenin signaling pathway, a fundamental regulatory system, is frequently dysregulated in various cancers. Its intricate molecular mechanisms underlie Wnt activation and its oncogenic consequences, including cell proliferation, survival, and metastasis. Emerging therapeutic approaches aim at inhibiting aberrant Wnt signaling, though challenges in targeting this pathway and future directions for drug development are ongoing [3].

The PI3K/Akt/mTOR signaling pathway plays a multifaceted role as a crucial regulator of cell growth, proliferation, and survival in various human cancers. Genetic alterations in components of this pathway lead to its constitutive activation, promoting oncogenesis and contributing to therapeutic resistance. A current overview of PI3K/Akt/mTOR inhibitors under development and in clinical trials emphasizes their potential as targeted therapies and strategies to overcome resistance [4].

The mitogen-activated protein kinase (MAPK) signaling pathway is a central player in cell proliferation, differentiation, and survival, frequently dysregulated in cancer. Mutations in key components like RAS and BRAF drive tumor development and progression. MAPK pathway inhibitors have shown successes in melanoma and other cancers, yet significant challenges remain, such as acquired drug resistance and the need for combination therapies to improve patient outcomes [5].

The JAK-STAT signaling pathway holds a critical role in normal cellular processes, with profound implications in various cancers when dysregulated. Constitutive activation of JAK-STAT contributes to tumor cell proliferation, survival, angiogenesis, and immune evasion. Recent advancements in developing JAK-STAT inhibitors show therapeutic potential in hematological malignancies and solid tumors, though challenges in selectivity, toxicity, and resistance persist, suggesting

future avenues for research [6].

The Hedgehog signaling pathway, a crucial regulator of embryonic development, experiences aberrant activation in numerous adult cancers. Dysregulation of this pathway drives uncontrolled cell proliferation, self-renewal of cancer stem cells, and resistance to conventional therapies. Updates on current understanding of Hedgehog pathway components, the development of targeted inhibitors, and their clinical applications are available, alongside discussions on resistance mechanisms and strategies to overcome them [7].

The Notch signaling pathway has multifaceted roles in various cancers. Notch dysregulation contributes to tumor initiation, progression, angiogenesis, and the maintenance of cancer stem cells. Recent advancements in understanding Notch's complex interplay with other signaling pathways highlight the therapeutic potential of Notch inhibitors, including gamma-secretase inhibitors, in clinical development, alongside challenges and opportunities for future research [8].

The intricate connection between Epithelial-Mesenchymal Transition (EMT) and various oncogenic signaling pathways is crucial, highlighting EMT's critical role in cancer progression and metastasis. Pathways like Wnt/β-catenin, TGF-β, Notch, and RTK signaling orchestrate EMT, enabling cancer cells to acquire migratory and invasive properties. Therapeutic implications exist for targeting EMT-related pathways to combat metastasis, though challenges in developing effective anti-EMT strategies for cancer treatment remain [9].

A fundamental interplay exists between oncogenic signaling pathways and cell cycle regulation. Disruptions in this delicate balance drive uncontrolled cancer cell proliferation. Various key pathways like RAS/MAPK and PI3K/AKT converge on cell cycle machinery, particularly cyclins and Cyclin-Dependent Kinases (CDKs). The therapeutic potential of targeting cell cycle regulators, such as CDK inhibitors, in overcoming drug resistance and improving clinical outcomes in various cancer types is promising [10].

Description

The complex landscape of oncogenic signaling pathways plays a crucial role in tumor initiation, progression, and metastasis [1]. These pathways, when dysregulated, drive oncogenesis, making them prime targets for therapeutic intervention [1]. Advancements in molecular profiling have fostered the evolution of cancer treatment towards precision oncology, keenly focusing on targeting specific oncogenic pathways. This allows for the identification of personalized therapeutic targets, a significant move beyond traditional chemotherapy [2]. The development of targeted therapies involves various mutated signaling pathways and their corresponding inhibitors, highlighting successes and challenges related to drug resis-

tance and the need for combination strategies [2].

A fundamental regulatory system often dysregulated in various cancers is the Wnt/β-catenin signaling pathway. Its intricate molecular mechanisms underpin Wnt activation and its oncogenic consequences, including cell proliferation, survival, and metastasis [3]. Therapeutic approaches aiming to inhibit aberrant Wnt signaling face challenges in targeting and development [3]. Similarly, the PI3K/Akt/mTOR signaling pathway is a crucial regulator of cell growth, proliferation, and survival in human cancers. Genetic alterations leading to its constitutive activation promote oncogenesis and contribute to therapeutic resistance. PI3K/Akt/mTOR inhibitors are under development and in clinical trials, showing potential as targeted therapies [4]. The mitogen-activated protein kinase (MAPK) signaling pathway also plays a central role in cell proliferation, differentiation, and survival, often dysregulated in cancer. Mutations in key components like RAS and BRAF drive tumor development, and while MAPK pathway inhibitors have shown success, acquired drug resistance and the need for combination therapies remain significant challenges [5].

Beyond these, the JAK-STAT signaling pathway is critical in normal cellular processes, with profound implications in various cancers when dysregulated. Its constitutive activation contributes to tumor cell proliferation, survival, angiogenesis, and immune evasion. While JAK-STAT inhibitors show therapeutic potential, challenges in selectivity, toxicity, and resistance guide future research [6]. The Hedgehog signaling pathway, a crucial regulator of embryonic development, also sees aberrant activation in numerous adult cancers. This dysregulation drives uncontrolled cell proliferation, self-renewal of cancer stem cells, and resistance to conventional therapies. Targeted inhibitors for this pathway are being developed, alongside discussions on overcoming resistance [7]. The Notch signaling pathway also has multifaceted roles in various cancers. Its dysregulation contributes to tumor initiation, progression, angiogenesis, and cancer stem cell maintenance. Notch inhibitors, including gamma-secretase inhibitors, are in clinical development, posing both challenges and opportunities for research [8].

The intricate connection between Epithelial-Mesenchymal Transition (EMT) and various oncogenic signaling pathways is critical for cancer progression and metastasis. Pathways like Wnt/β-catenin, TGF-β, Notch, and RTK signaling orchestrate EMT, enabling cancer cells to acquire migratory and invasive properties. Targeting EMT-related pathways holds therapeutic implications for combating metastasis, despite challenges in developing effective anti-EMT strategies [9]. Furthermore, a fundamental interplay exists between oncogenic signaling pathways and cell cycle regulation. Disruptions in this balance drive uncontrolled cancer cell proliferation, with pathways like RAS/MAPK and PI3K/AKT converging on cell cycle machinery such as cyclins and Cyclin-Dependent Kinases (CDKs). Targeting cell cycle regulators, like CDK inhibitors, shows therapeutic potential in overcoming drug resistance and improving clinical outcomes across various cancer types [10]. Overall, addressing the complexities of drug resistance through combination therapies is a recurring theme to enhance patient outcomes in targeted cancer treatments [1, 2, 5, 6, 7, 8, 10].

Conclusion

Oncogenic signaling pathways are crucial in tumor initiation, progression, and metastasis, with dysregulation driving oncogenesis. Key pathways include RTK/RAS/MAPK, PI3K/AKT/mTOR, and Wnt/β-catenin. Advancements in molecular profiling have pushed cancer treatment towards precision oncology, identifying personalized therapeutic targets. Targeted therapies, utilizing small molecule inhibitors and monoclonal antibodies, have shown promise. Specific pathways like Wnt/β-catenin, PI3K/Akt/mTOR, and MAPK are frequently dysregulated, promoting

cell proliferation, survival, and metastasis. Inhibitors for these pathways, including RAS and BRAF mutations in MAPK, show success but face challenges. Other critical pathways involved are JAK-STAT, Hedgehog, and Notch, all contributing to various cancer hallmarks like uncontrolled cell proliferation, self-renewal of cancer stem cells, angiogenesis, and immune evasion when aberrantly activated. The intricate connection between Epithelial-Mesenchymal Transition (EMT) and these oncogenic pathways, such as Wnt/β-catenin, TGF-β, Notch, and RTK signaling, is vital for metastasis. Disruptions in the interplay between oncogenic pathways and cell cycle regulation also drive uncontrolled cancer cell proliferation. Despite therapeutic advancements, significant challenges remain, including drug resistance mechanisms, toxicity, and the need for combination strategies to improve patient outcomes. Future research aims to develop more effective and selective inhibitors, exploring new therapeutic targets and multi-faceted approaches.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Yongqiang Hou, Meng Li, Yaping Sun. "Targeting Oncogenic Signaling Pathways for Cancer Therapy." *Front Pharmacol* 13 (2022):878691.
2. Jing Zhang, Fan Yang, Mengya Li. "Targeting oncogenic pathways in cancer: A focus on precision oncology." *Front Pharmacol* 14 (2023):1222956.
3. Yuqian Li, Xuejiao Huang, Mingxin Lin. "The Wnt/β-catenin signaling pathway in cancer: From basic mechanisms to therapeutic strategies." *Cell Oncol (Dordr)* 44 (2021):1121-1135.
4. Jinhui Xia, Mengran Hu, Xiaohong Liu. "The PI3K/Akt/mTOR Pathway in Cancer: From Molecular Mechanisms to Therapeutic Targets." *Int J Mol Sci* 21 (2020):5829.
5. Bing Han, Jingya Wang, Xiang Li. "Targeting the MAPK Signaling Pathway in Cancer Therapy: Progress and Challenges." *Int J Mol Sci* 25 (2024):1205.
6. Yu-Hao Mao, Shi-Yi Zhang, Ru-Yi Wang. "The JAK-STAT pathway in cancer: recent progress and future challenges." *Signal Transduct Target Ther* 8 (2023):236.
7. Meihua Luo, Yuanyuan Li, Yu Li. "Hedgehog signaling pathway in cancer: Recent updates and therapeutic implications." *Cancer Cell Int* 21 (2021):290.
8. Ruoyan Ma, Jinjin Qi, Qiuyue Hu. "Notch signaling pathway: Recent advances in cancer pathogenesis and therapeutic strategies." *Biomed Pharmacother* 153 (2022):113426.
9. Bo Zhao, Wenjun Zhang, Pengxiang Ding. "EMT-related signaling pathways and their roles in cancer progression and metastasis." *Oncotarget* 11 (2020):1515-1531.
10. Yuqin Huang, Guixian Wang, Yingying Zhao. "Oncogenic Signaling Pathways in Cancer and the Role of Cell Cycle Regulation." *Front Cell Dev Biol* 7 (2019):236.

How to cite this article: Jelinek, Katarina. "Oncogenic Signaling: Targets, Therapies, and Resistance." *J Oncol Transl Res* 11 (2025):315.

***Address for Correspondence:** Katarina, Jelinek, Department of Applied Oncology, Prague Institute of Medical Studies, Prague, Czech Republic , E-mail: k.jelinek@pims.cz

Copyright: © 2025 Jelinek K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Aug-2025, Manuscript No. jotr-25-175592; **Editor assigned:** 04-Aug-2025, PreQC No. P-175592; **Reviewed:** 18-Aug-2025, QC No. Q-175592; **Revised:** 22-Aug-2025, Manuscript No. R-175592; **Published:** 29-Aug-2025, DOI: 10.37421/2476-2261.2025.11.315
