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Abstract

Our aim is to give a characterization of extended Dynkin diagrams of Lie superalgebras
by means of concept of triple systems.
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1 Preliminaries and examples

Throughout this paper, we shall be concerned with algebras and triple systems over a field Φ
that is characteristic not 2 and do not assume that our algebras and triple systems are finite
dimensional, unless otherwise specified.

Definition 1.1. For ε = ±1 and δ = ±1, a vector space U(ε, δ) over Φ with the triple product
<−,−,−> is called a (ε, δ)-Freudenthal–Kantor triple system if

[L(a, b), L(c, d)] = L(<abc>, d) + εL(c,<bad>)
K(<abc>, d) + K(c, <abd>) + δK(a,K(c, d)b) = 0

where

L(a, b)c =<abc>, K(a, b)c =<acb> −δ <bca>, [A, B] = AB −BA

Remark 1.1. We note that

S(a, b) := L(a, b) + εL(b, a)
A(a, b) := L(a, b)− εL(b, a)

are a derivation and an anti-derivation of U(ε, δ), respectively.

Definition 1.2. A (ε, δ)-Freudenthal–Kantor triple system over Φ is said to be balanced if

dimΦ{K(x, y)}span = 1

Definition 1.3. For δ = ±1, a triple system over Φ is said to be δ-Lie triple system if the
following are satisfied:

[abc] = −δ[bac]
[abc] + [bca] + [cab] = 0
[ab[cde]] = [[abc]de] + [c[abd]e] + [cd[abe]]
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For the δ-Lie triple systems associated with (ε, δ)-Freudenthal–Kantor triple systems, we have
the following.

Proposition 1.1 ([7]). Let U(ε, δ) be a (ε, δ)-Freudenthal–Kantor triple system. If P is a
linear transformation of U(ε, δ) such that P < xyz >=< PxPyPz > and P 2 = −εδ Id, then
(U(ε, δ), [−,−,−]) is a Lie triple system for the case of δ = 1 and an anti-Lie triple system for
the case of δ = −1 with respect to the product

[xyz] :=<xPyz> −δ <yPxz> +δ <xPzy> − <yPzx>

Corollary 1.1. Let U(ε, δ) be a (ε, δ)-Freudenthal–Kantor triple system. Then the vector space
T (ε, δ) := U(ε, δ) ⊕ U(ε, δ) becomes a Lie triple system for the case of δ = 1 and an anti-Lie
triple system for the case of δ = −1 with respect to the triple product defined by

[(
a
b

)(
c
d

)(
e
f

)]
=

(
L(a, d)− δL(c, b) δK(a, c)

−εK(b, d) ε(L(d, a)− δL(b, c))

)(
e
f

)

¿From these results, it follows that the vector space

L(V ) := Inn Der T ⊕ T (= L(T, T )⊕ T )

where T is a δ-Lie triple system and Inn Der T := {L(X, Y )|X, Y ∈ T}span turns out to be a
Lie algebra (δ = 1) or Lie superalgebra (δ = −1) by

[D + X, D′ + X ′] = [D,D′] + L(X,X ′) + DX ′ −D′X

Definition 1.4. We denote by L(ε, δ) the Lie algebras or Lie superalgebras obtained from these
constructions associated with U(ε, δ) and call these algebras a canonical standard embedding.

Definition 1.5. A (ε, δ)-Freudenthal–Kantor triple system U(ε, δ)) is said to be unitary if the
linear span k of the set {K(a, b)|a, b ∈ U(ε, δ)} contains the identity endomorphism Id.

Remark 1.2. We note that the balanced property is unitary.

For these standard embedding Lie algebras or superalgebras L(ε, δ), we have the following 5
grading subspaces:

L(ε, δ) = L−2 ⊕ L−1 ⊕ L0 ⊕ L1 ⊕ L2

where

U(ε, δ) = L−1, T (ε, δ) = L−1 ⊕ L1, k = {K(a, b)}span = L−2

2 Lie superalgebras D(2, 1; α), G(3) and F (4)

These constructions of D(2, 1, α), G(3) and F (4) are considered [8, 1]. Briefly describing, we
have the following.

1. Let V be a quarternion algebra over the complex numbers. Then V is a balanced (−1,−1)
Freudenthal–Kantor triple system with respect to certain triple product and the standard
embedding Lie superalgebra L(U) is D(2, 1;α) type’s with dimL(V ) = 17.

2. Let V be a octonion algebra over the complex number. Then V is a balanced (−1,−1)
Freudenthal–Kantor triple system with respect to certain triple product and the standard
embedding Lie superalgebra L(U) is F (4) type’s with dimL(V ) = 40.

3. Let V be a Im O (= the imaginary part of octonion algebra ). Then V is a balanced
(−1,−1)-Freudenthal–Kantor triple system with respect to certain triple product and the
standard embedding Lie superalgebra L(U) is G(3) type’s with dimL(V ) = 31.
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3 Extended Dynkin diagrams and triple systems

In this section, we will only describe about distinguished extended Dynkin diagram of their
canonical Lie superalgebras associated with (−1,−1)-Freudenthal–Kantor triple systems F(4)
and G(3) types, because for the other cases we may deal with the explaination by means of the
same methods.

(a) For F(4) type distinguished extended Dynkin diagram and usual Dynkin diagram [3] we
have the following:

© ≡>
⊗

©⇐© ©
α0 α1 α2 α3 α4⊗

©⇐© ©
α1 α2 α3 α4

U = L−1 = (−1,−1) is a balanced Freudenthal–Kantor triple system with dimU = 8 (cf Sec.
2).

U ↔
⊗

© © ©
© ©
©

↔ {α1, α1+α2, α1+α2+α3, α1+α2+α3+α4, α1+2α2+α3, α1+2α2+α3+α4,

α1+2α2+2α3+α4, α1+3α2+2α3+α4}
L−2(U) ↔ {2α1 + 3α2 + 2α3 + α4}

L(U) is the standard embedding Lie superalgebra associated with U and dimL(U) = 40,
dimL−2 = dimL2 = 1. Then we can easily see its structure as follows:

L(U)/(L−2 ⊕ L0 ⊕ L2) ∼= L−1 ⊕ L1 := T (as anti-Lie triple system)

and

Inn DerT ∼= L−2 ⊕ L0 ⊕ L2 = A1 ⊕B3

= distinguished extended Dynkin diagram with omitted ⊗

=
{(

L(a, b) −K(c, d)
K(e, f) −L(b, a)

)}

span

L0 = λI ⊕B3 =
{(

L(a, b) 0
0 −L(b, a)

)}

span

= {L(a, b)}span

of course, L(a, b) = S(a, b) + A(a, b), where S(a, b) is a inner derivation of U , K(a, b) =
A(a, b) =<.|.> Id is an anti-derivation of U .

Furthermore, these imply

A1
∼=

{(
0 Id
0 0

)}

span

⊕
{(

Id 0
0 − Id

)}

span

⊕
{(

0 0
Id 0

)}

span

= L−2 ⊕ {A(a, b)}span ⊕ L2

Inn DerU = {S(a, b)}span
∼= B3 = Dynkin diagram with omitted ⊗
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(b) For G(3) type distinguished extended Dynkin diagram and usual Dynkin diagram [3] as
well as F(4) we have the following:

© ≡ >
⊗

© <≡ ©
α0 α1 α2 α3⊗

© <≡ ©
α1 α2 α3

U = L−1 = (−1,−1)-balanced Freudenthal–Kantor triple system with dimU = 7 (cf Section 2),

U ↔
⊗

© ©
© ©
©
©

↔ {α1, α1+α2, α1+α2+α3, α1+2α2+α3, α1+3α2+α3, α1+3α2+2α3,

α1+4α2+2α3}
L−2(U) ↔ {2α1 + 4α2 + 2α3}

L(U) is the standard embedding Lie superalgebra associated with U and dimL(U) = 31,
dimL−2 = dimL2 = 1. Then we can easily see its structure as follows:

L(U)/(L−2 ⊕ L0 ⊕ L2) ∼= L−1 ⊕ L1 := T (as anti-Lie triple system)

and

Inn DerT ∼= L−2 ⊕ L0 ⊕ L2 = A1 ⊕G2

= distinguished extended Dynkin diagram with omitted ⊗

=
{(

L(a, b) −K(c, d)
K(e, f) −L(b, a)

)}

span

L0 = λI ⊕B3 =
{(

L(a, b) 0
0 −L(b, a)

)}

span

= {L(a, b)}span

Of course, L(a, b) = S(a, b) + A(a, b), where S(a, b) is an inner derivation of U , K(a, b) =
A(a, b) =<.|.> Id is an anti-derivation of U . Furthermore, these imply

A1
∼=

{(
0 Id
0 0

)}

span

⊕
{(

Id 0
0 − Id

)}

span

⊕
{(

0 0
Id 0

)}

span

= L−2 ⊕ {A(a, b)}span ⊕ L2

Inn DerU = {S(a, b)}span
∼= G2 = Dynkin diagram with omitted ⊗
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