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Introduction
Simultaneously testing a family of m null hypotheses Hi(i =1,...,m) 

can arise from many circumstances such as comparing several 
treatments with a control. A main concern in multiple testing is the 
multiplicity problem, namely, that the probability of committing at least 
one Type I error sharply increases with the number of the hypotheses 
tested at a prespecified level. The probability of at least one false 
rejection is referred to as the familywise error rate (FWER). Several 
procedures have been proposed for controlling the familywise error 
rate, including proposals by Holm [1] and Hochberg [2]. When some 
null hypotheses are false, these procedures are often conservative by 
a factor given by the proportion of the true null hypotheses among 
all null hypotheses.By exploiting knowledge of this proportion 
Hochberg & Benjamini [3] introduced adaptive Bonferroni, Holm 
and Hochberg procedures for controlling the familywise error rate. 
These adaptive procedures estimate, the proportion and then use it 
to derive more powerful testing procedures. However, whether or not 
the adaptive procedure ultimately control the FWER has not yet been 
mathematically established. Recently, Guo [4] offered a partial answer 
to the open problem. He considered the aforementioned adaptive 
Bonferroni procedure, modified it slightly by replacing the estimate of 
the number of true null hypothesis by the estimate that Storey et al. [5] 
considered in the context of false discovery rate, and proved that, when 
the p-values are independent or exhibit certain types of dependence, 
his version of adaptive Bonferroni procedure controls the FWER. Guo 
[4] conducted a simulation study for positive correlated p-values with
the tuning parameter λ = 0.2 to show his procedure controlling FWER. 
However, Finner and Gontscharuk [6] reported that the adaptive 
Bonferroni procedure does not control FWER when λ = 0.5 for positive 
highly-correlated p-values. Guo [4] did not explain why he chose the 
tuning parameter λ = 0.2. These motivated us to do a further simulation 
study for the adaptive Bonferroni procedure. In this paper we propose 
to use λ = α. Then Guo’s adaptive procedure controls FWER for positive 
correlated p-values. This observation has not been reported in the 
literature.

Guo’s Adaptive Bonferroni Procedure

Given m null hypotheses H1 ,...,Hm, consider testing if Hi = 0, true, 
or Hi = 1, false, simultaneously for i =1,...,m, based on their respective 
p–values P1,..,Pm. Assume that Hi(i=1,...,m), are Bernoulli random 

variables with pr(H=0)=π0 =1−pr(H=1), and the corresponding p–
values Pi can be expressed as

Pi=(1−Hi)Ui+HiG
−1(Ui),           (2.1)

where Ui(i=1,...,m) are independent and identically distributed uniform 
(0,1) random variables that are independent of all Hi;Gi is some 
cumulative distribution function on (0,1) and 1

iG (u)−  is the inverse of 
Gi. The Pis are conditionally independent given Hi(i=1,...,m), but His 
may be dependent. If the His are independent, then (2.1) reduces to the 
conventional random effect model [7-9].

If V is the number of true null hypotheses rejected, then the 
familywise error rate is defined to be the probability of one or more 
false rejections, i.e. FWER = pr{V > 0}. Let P1:m ≤···≤ Pm:m be the ordered 
values of P1,...,Pm and H(1),...,H(m) be the corresponding null hypotheses. 
The Bonferroni procedure controls the familywise error rate at level π0α 
for test statistics with arbitrary dependence by rejecting Hi whenever 
Pi ≤ α/m. Holm [1] proposed a step-down version of the Bonferroni 
procedure, which controls the familywise error rate at α. Let αi = α/(m−
i+1)(i = 1,...,m) and r be the largest i such that P1:m ≤ α1,...,Pi:m ≤ αi, then 
under the Holm procedure, we reject the hypotheses H(1),...,H(r). If r is 
not defined, then no hypothesis is rejected.

Because the above Bonferroni-type procedures are conservative 
by the factor π0, knowledge of π0 can be useful for improving the 
performance of Bonferroni and Holm’s procedures. Several estimators 
of π0 have been introduced; see [5,10], among others. Guo [4] used 
Storey et al.[4]’s simple estimator:
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where 0 < λ < 1 is a prespecified constant, 1
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number of p-values less than or equal to λ, and I( ) is an indicator 
function. Storey et al.’s estimator is a simplified version of Schweder 
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Abstract

Guo introduced an adaptive Bonferroni procedure and he proved that his adaptive Bonferroni procedure controls 
the familywise error rate under a conditional dependence model. However, how to choose the tuning parameter λ to 
control the familywise error rate in the procedure under positive dependence is not clear in his paper. In this paper, 
we suggest that λ = α. Simulation studies are provided.
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and Spjotvoll’s estimator, which was used in the adaptive procedures of 
Hochberg & Benjamini [3] and Benjamini & Hochberg [11]. Based on 

0ˆ ( )π λ , Guo’s adaptive Bonferroni procedure is defined as follows

Definition 2.1 The level α adaptive Bonferroni procedure.

1. Given a fixed λ∈(0,1), find 1
( ) ( )m

ii
R I Pλ λ

=
= ≤∑  and then calculate 

0π̂  based on (2.2).

2. Reject ( ) ( )1 ,..., rH H  , where

:
0

ˆ max{ 1,..., ( ) : }.
ˆi mr i R P

m
αλ
π

= = ≤

If the maximum does not exist, reject no hypothesis.

Guo proved that the adaptive Bonferroni procedure above controls 
the familywise error rate at level α in the conditional dependence model.

Simulations of Familywise Error Rate and Power for 
Dependent p-values

It is recognized that the dependence issue is always very complicated 
in multiple testing. We simulate six different types of dependence 
structures to compare numerically the FWER control level and the 
power of Guo’s adaptive Bonferroni procedure (denoted by a Bon in 
tables) with that of the Bonferroni (denoted by Bonintables) and Holm 
procedures for dependent p-values. We set α = 0.01, 0.05 and λ= α, 
0.1, 0.2, 0.5 depending on the type of dependence structure of p-values. 
The simulated FWER and average power, the expected proportion 
of false nulls that are rejected, are based on 10000 replications. With 
10000 repetition, the standard error of the estimated coverage near α is 

(1 )
10000
α α− , and it never exceeds 0.5(1 0.5)

10000
− =0.005.

Example 1 (positive equicorrelation)

In this example, our simulation study is similar to Guo’s simulation 
study. The number of tests m = 200 was set for H0i : µi=0 against Hai : µi ≠ 0 
with the fraction of the true null hypotheses π0 = 0.1,0.2,...,0.9. Let 
Z0,Z1,...,Zm be distributed independently and identically as N(0,1) and 

0 1 i iYi Z Zρ ρ µ= + − + , where ρ = 0.1,...,0.9 and µi = 0,i = 1,...,m0 = π0m, 

µi = 6, i = m0+1,...,m. We only report ρ = 0.5,0.9 here for space limits. 
When ρ = 0,Yi are independent and the p-values are independent, a 
special case of the conditional dependence model. Guo studied λ=0.2 

for α = 0.05 and 1000 replications. Note that 0.01(1 0.01)0.01 3 0.013
10000

−
+ = . 

When α = 0.01 and λ = 0.2, Tables 1 and 2 indicate that the adaptive 

Bonferroni procedure does not control FWER for ρ = 0.5, 0.9; when ρ = 

0.9, the adaptive Bonferroni procedure does control FWER even for λ = 
0.1. Table 3 indicates that for λ = 0.2 the adaptive Bonferroni procedure 
controls FWER when α = 0.05 and ρ = 0.5, which matches the result 
in Guo [4]. Table 4 demonstrates that when π0 = 0:1; 0:2, the adaptive 

Bonferroni procedure does not control FWER for λ = 0.2 when α = 

0.5 and ρ = 0.9 (note that 0.05(1 0.05)0.05 3 0.0565
10000

−
+ = ). However, for 

λ = α, the adaptive Bonferroni procedure does control FWER for all ρ 
=0.1,...,0.9 and its FWER level is more closer to α than the Bonferroni 
procedure and the Holm procedure. The powers of the adaptive 
Bonferroni procedure are larger than the powers of the Bonferroni 

procedure and the Holm procedure even for λ = α from Tables 1-4.

π0 = 0m
m

Bon Holm
adaptive Bon

λ = 0.2 λ = 0.1 λ = α

0.1 .0006(.9743) .0059(.9911) .0167(.9960) .0127(.9953) .0081(.9940)
0.2 .0016(.9743) .0053(.9879) .0157(.9930) .0121(.9919) .0077(.9903)
0.3 .0024(.9742) .0065(.9854) .0160(.9905) .0126(.9892) .0079(.9875)
0.4 .0034(.9741) .0067(.9832) .0154(.9882) .0128(.9868) .0085(.9849)
0.5 .0042(.9741) .0067(.9813) .0152(.9861) .0127(.9847) .0085(.9827)
0.6 .0048(.9741) .0068(.9796) .0153(.9844) .0126(.9828) .0082(.9808)
0.7 .0054(.9740) .0070(.9779) .0155(.9826) .0119(.9810) .0084(.9789)
0.8 .0060(.9739) .0072(.9764) .0156(.9811) .0121(.9793) .0081(.9772)
0.9 .0069(.9740) .0076(.9752) .0158(.9796) .0126(.9777) .0089(.9757)

value in the parenthesis is the corresponding power.

Table 1: FWER and power when α =0.01, ρ =0.5.

π0 = 0m
m

Bon Holm
adaptive Bon

λ = 0.2 λ = 0.1 λ = α

0.1 .0003(.9735) .0014(.9853) .0292(.9997) .0172(.9996) .0043(.9948)
0.2 .0004(.9734) .0014(.9834) .0327(.9997) .0208(.9994) .0047(.9910)
0.3 .0005(.9735) .0013(.9818) .0341(.9996) .0197(.9991) .0040(.9879)
0.4 .0007(.9734) .0010(.9802) .0338(.9996) .0191(.9985) .0040(.9850)
0.5 .0008(.9734) .0011(.9789) .0335(.9995) .0191(.9979) .0036(.9828)
0.6 .0009(.9734) .0010(.9776) .0333(.9994) .0188(.9973) .0032(.9806)
0.7 .0009(.9734) .0010(.9765) .0327(.9993) .0182(.9965) .0031(.9787)
0.8 .0009(.9733) .0010(.9754) .0323(.9992) .0175(.9958) .0032(.9770)
0.9 .0009(.9732) .0010(.9743) .0318(.9991) .0176(.9950) .0030(.9753)

value in the parenthesis is the corresponding power.

Table 2: FWER and power when α = 0.01, ρ = 0.9.
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Example 2 (positive block dependence)

This example largely follows the set-up of Example 3 in Finner and 
Gontscharuk [6]. Let

251
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and Σ = σ2 J25 ⊗{(1-ρ) J4+ρ14×4}, ρ ∈ (0,1), where 1n denotes a column 

vector of 1s of length n,1n×n denotes an n×n matrix of 1s and Jn is 

the identity matrix. Let Xj ~N100(µ,Σ), j = 1,...,n, be independent and 

identically distributed. We use σ =1 and a =1.0,1.5,2.0 in the simulation. 

We consider the multiple test problem Hai : µi = 0 versus Hai : µi ≠ 0, i = 

1,..,100. We use the test statistic i
i

i

X nT
s
−

=  as Finner and Gontscharuk 
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statistics have a t(n-1) distribution. The p-values corresponding to Ti is 

( )1
2

ni t iP F T
−

= − , where Ftv denotes the cumulative distribution function 

of a central t-distribution with v degrees of freedom. For illustration, 
we simulate this model for n = 10, a = 2.0; n = 16, a = 1.5; n = 25, a 
= 1.0, and only three values of ρ = 0.1,0.5,0.9. Table 5 indicates that 
the adaptive Bonferroni procedure controls FWER well for each ρ and 
λ. Moreover, for the adaptive Bonferroni procedure, FWER decreases 
slightly but power does not change much when ρ increases and its 
FWER and power seem to be nearly independent of λ.

Example 3 (pairwise comparisons)

This example is modified from Example 2 in Finner and 

Gontscharuk [6]. Let Xij, i = 1,..,k,j=1,..,n, be independent normally 

distributed random variables with unknown mean µi and unknown 
variance σ2. We consider the pairwsie comparisons problem

Hoij : µi=µj versus Haij : µi ≠ µj ,1 ≤ i < j ≤ k

for various scenarios of means. The test statistics are given by 
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the test statistics have a tk(n-1) distribution. The p-values corresponding 
to Tij is ( )( 1)

2 .
k nij t ijP F T

−
= −  Setting t0=0, a scenario 

1

1{ ,.., }
r

T
t tµ µ  means that 

1 1 1i

i
t i it tµ µ µ
− + −= = + =  for i = 1,..,r. So the case µ1 = µ2 = µ3 = 0, µ4 = 

µ5 = µ6 = µ7 = 2 and µ8 = µ9 = µ10 = 4 corresponds to {03, 24, 43} with k 

=10 and 10 9 45.
2

m ×
= =  Table 6 shows that the adaptive Bonferroni 

procedure apparently controls FWER for all λ and it is more powerful 
than the Bonferroni procedure and the Holm procedure.

π0 = 0m
m

Bon Holm
adaptive Bon

λ = 0.2 λ = α

0.1 .0037(.9904) .0345(.9979) .0539(.9993) .0434(.9988)
0.2 .0072(.9903) .0284(.9967) .0475(.9985) .0368(.9978)
0.3 .0108(.9903) .0279(.9956) .0465(.9977) .0343(.9968)
0.4 .0133(.9903) .0263(.9947) .0439(.9970) .0315(.9959)
0.5 .0158(.9903) .0259(.9938) .0423(.9963) .0320(.9951)
0.6 .0178(.9903) .0257(.9931) .0429(.9956) .0312(.9942)
0.7 .0203(.9903) .0253(.9923) .0414(.9950) .0308(.9935)
0.8 .0224(.9902) .0258(.9916) .0404(.9944) .0313(.9928)
0.9 .0241(.9903) .0262(.9910) .0408(.9940) .0311(.9922)

value in the parenthesis is the corresponding power.

Table 3: FWER and power when α = 0.05, ρ = 0.5.

π0 = 0m
m

Bon Holm
adaptive Bon

λ = 0.2 λ = α

0.1 .0017(.9899) .0107(.9956) .0636(1.0000) .0268(.9999)
0.2 .0022(.9899) .0074(.9948) .0585(1.0000) .0228(.9999)
0.3 .0023(.9899) .0069(.9939) .0549(.1.0000) .0211(.9998)
0.4 .0025(.9899) .0058(.9931) .0528(1.0000) .0196(.9997)
0.5 .0027(.9899) .0054(.9925) .0504(1.0000) .0192(.9996)
0.6 .0028(.9899) .0044(.9919) .0484(1.0000) .0182(.9995)
0.7 .0029(.9899) .0042(.9914) .0481(1.0000) .0176(.9993)
0.8 .0033(.9900) .0042(.9910) .0471(1.0000) .0168(.9992)
0.9 .0036(.9900) .0043(.9905) .0471(1.0000) .0165(.9990)

value in the parenthesis is the corresponding power.

Table 4: FWER and power when α = 0.05, ρ = 0.9.

ρ Procedure
n = 10, a = 2.0 n = 16, a = 1.5 n = 25, a = 1.0
FWER power FWER power FWER power

0.1

Bon .0257 .7740 .0269 .9015 .0272 .8115
aBon (λ = 0.5) .0500 .8637 .0497 .9433 .0505 .8699
aBon (λ = 0.2) .0504 .8648 .0494 .9438 .0499 .8708
aBon (λ = 0.05) .0498 .8651 .0503 .9440 .0497 .8708
Holm .0442 .8491 .0477 .9411 .0451 .8608

0.5

Bon .0224 .7741 .0261 .9012 .0267 .8119
aBon (λ = 0.5) .0492 .8644 .0472 .9431 .0499 .8697
aBon (λ = 0.2) .0476 .8659 .0473 .9435 .0499 .8706
aBon (λ = 0.05) .0481 .8662 .0471 .9436 .0488 .8706
Holm .0418 .8497 .0444 .9408 .0430 .8608

0.9

Bon .0216 .7745 .0223 .9012 .0208 .8123
aBon (λ = 0.5) .0461 .8646 .0422 .9425 .0421 .8708
aBon (λ = 0.2) .0467 .8659 .0416 .9437 .0424 .8711
aBon (λ = 0.05) .0458 .8663 .0411 .9437 .0418 .8710
Holm .0394 .8496 .0388 .9406 .0360 .8610

Table 5: Simulation study for the positive block dependence model in example2 
for α = 0.05.

µ - scenario Procedure
Results for n = 4 Results for n = 6 Results for n = 8
FWER power FWER power FWER power

{03,24,43}, Bon .0107 .4442 .0120 .6420 .0118 .7967
m = 45, m0 = 12 aBon (λ = 0.5) .0450 .5471 .0505 .7488 .0530 .8788

aBon (λ = 0.2) .0381 .5428 .0445 .7505 .0504 .8804
aBon (λ = 0.05) .0298 .5261 .0369 .7442 .0434 .8792
Holm .0211 .4825 .0263 .7070 .0328 .8628

{04,11,24,31}, Bon .0125 .2250 .0131 .3963 .0145 .5250
m = 45, m0 = 12 aBon (λ = 0.5) .0350 .2949 .0382 .4776 .0444 .6016

aBon (λ = 0.2) .0313 .2859 .0329 .4706 .0379 .5966
aBon (λ = 0.05) .0239 .2702 .0263 .4565 .0306 .5853
Holm .0173 .2409 .0192 .4261 .0219 .5609

{04,14,24,34,44}, Bon .0071 .2760 .0077 .4078 .0071 .4954
m = 190, m0 = 30 aBon (λ = 0.5) .0265 .3366 .0300 .4748 .0327 .5643

aBon (λ = 0.2) .0221 3275 .0259 .4660 .0287 .5564
aBon(λ = 0.05) .0161 .3143 .0198 .4532 .0214 .5439
Holm .0108 .2899 .0113 .4288 .0131 .5206

Table 6: Simulation study for the pairwise comparisons problem in example 3 for 
α=0.05.
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Example 4 (Storey et al. [5]’s block dependence)

This example follows Storey, Taylor and Siegmund [5]’s dependence 
example. The null statistics have N(0,1) marginal distribution with m0 
= 60,240 and the alternative distributions have marginal distribution 
N(6,1) with m1 = m - m0 = 240,60 respectively. The statistics have 
correlation ± ρ = 0.1,..,0.9 in group size of 10 as the following.

1 ,
5,

5, 5.
ij

i j
i j
i j

ρ
ρ

=
= < ≤
− ≤ ≤

∑

See Storey et al. [5] for details. FWER is well controlled for all the 
procedures and λ choices. For brevity, Table 7 lists the results for ρ = 
0.1,0.5,0.9 only.

Example 5 (negative block dependence)

The set-up is similar to Example 4 above but the statistic correlation 
is negative. The null statistics have N(0,1) marginal distribution with 
m0 = 320 and the alternative distributions have marginal distribution 
N(0,6) with m1 = m - m0 = 80. The statistics have correlation -ρ in group 
size of 2 as the following.

1
.

1ij

ρ
ρ

− 
= − 

∑
FWER is well controlled for all the procedures and λ choices. For 

brevity, Table 8 lists the results for correlation -0.1,-0.5,-0.9 only.

Example 6 (multivariate equicorrelated t-distribution)

We consider the situation that was described in Example 1 and 
Example 5 in Finner and Gontscharuk [6]. Let Let Xi ~N(µi,σ

2), i 

= 1,...,m be independent normal random variables and let 
2

2
2 v

vs X
σ

∈  

be independent of the Xis. The multiple testing problem is H0i : µi 

= 0 versus Hai : µi > 0,i = 1,...,m with test statistic i
i

XT
s

= . Then T = 

π0 = 0m
m Procedure

Results 
for ρ = 0.1 Results 

for ρ = 0.5 Results for ρ = 0.9

FWER power FWER power FWER power

0.2

Bon .0118 .9873 .0106 .9874 .0097 .9873
aBon (λ = 0.5) .0492 .9960 .0485 .9960 .0411 .9961
aBon (λ = 0.2) .0486 .9960 .0487 .9960 .0412 .9961
aBon (λ = 0.05) .0489 .9960 .0482 .9960 .0406 .9961
Holm .0483 .9960 .0477 .9960 .0380 .9959

0.8

Bon .0383 .9872 .0366 .9873 .0224 .9874
aBon (λ = 0.5) .0480 .9890 .0466 .9892 .0288 .9894
aBon (λ = 0.2) .0483 .9890 .0470 .9892 .0279 .9894
aBon (λ = 0.05) .0486 .9890 .0460 .9891 .0277 .9893
Holm .0480 .9890 .0455 .9891 .0270 .9891

Table 7: Simulation study for the block dependence model in example 4 for α=0.05.

Procedure
Results for −0.1 Results for −0.5 Results for −0.9
FWER power FWER power FWER power

Bon .0381 .9845 .0369 .9846 .0322 .9846
aBon (λ = 0.5) .0485 .9866 .0454 .9866 .0383 .9866
aBon (λ = 0.2) .0481 .9866 .0454 .9866 .0384 .9866
aBon (λ = 0.05) .0480 .9866 .0457 .9866 .0385 .9866
Holm .0482 .9865 .0456 .9866 .0387 .9866

Table 8: Simulation study for the negative block dependence model in example 5 
for α = 0.05.

Procedure
Results for m0 =80 Results for m0 =160 Results for m0 

=190

FWER power FWER power FWER Power

Bon .0158 .8981 .0279 .8984 .0320 .8984

aBon (λ = 0.5) .0375 .9524 .0341 .9137 .0331 .9016

aBon (λ = 0.2) .0413 .9502 .0352 .9103 .0367 .8980

aBon (λ = 0.05) .0407 .9515 .0346 .9119 .0349 .8998

Holm .0375 .9423 .0332 .9104 .0336 .9011

Table 9: Simulation study for the multivariate equicorrelated t-distribution model in 
example6 for α = 0.05.

(T1,...,Tm) has a multivariate equicorrelated t-distribution. The p-values 

are 1 .
v

i
i t

xP F
s

 = −  
 

 In the simulation, we have m = 200, ν = 15, σ2 = 1, 

µi = 0, i = 1,..., m0, and µi = 6, i = m0 +1,..., m, m0 = 80, 160, 190. Table 
9 demonstrates that FWER is obviously controlled for all values of m0 
and λ that are considered in the simulation. Moreover, the differences 
between the three procedures in FWER and power are virtually 
negligible and independent of the choice of λ when 0m

m
 is large.

Discussion 
Guo [4] mathematically proved that the adaptive Bonferroni 

procedure controls FWER under a conditional dependence model. A 
critical point for the adaptive Bonfer-roni procedure is the choice of 
the tuning parameter λ. Finner and Gontscharuk [6] suggested that λ 
around ½ may be a good compromise and they further commented that 
\Anyhow, it seems not easy to give precise guidelines here” (page 1046 of 
their paper). It is a challenging problem for the proof of FWER control 
for the adaptive Bonferroni procedure under dependent p-values. In 
this paper, we suggest that λ = α as a guideline, it seems that the adaptive 
Bonferroni procedure controls FWER for the positve equicorrelated 
normal distributions in our simulations. This simple choice for the 
tuning parameter λ will help applications of Guo’s adapative Bonferroni 
procedure.
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