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Abstract
During the last years several papers studying conditional functional equations have appeared. They mostly 

deal with equations satisfied on some restricted domain and many among them concern equations postulated for 
orthogonal vectors. In this paper, we define the conditional homomorphisms with the predecessor defined by γ 
(x)=γ (y) with an even mapping γ. Then, using a fixed point theorem, we investigate the stability of the conditional 
homomorphisms in Lie C* -algebras.

Keywords: Conditional homomorphism; Contractively sub
homogeneous; Expansively super homogeneous; Fixed point theorem; 
Stability

Introduction 
The problem of solving equations on spheres is an important part 

of computational aspects, ordinary differential equations and partial 
differential equations [1-3]. The development of computational 
methods for solving partial differential equations on the sphere is 
complicated by problems that result from the spherical coordinate 
system itself. However, some of the numerical methods for solving 
vector differential equations are applicable to any vector differential 
equation on the sphere.

The functional equation (ξ) is stable if any function f satisfying 
the equation (ξ) approximately is near to the true solution of (ξ). An 
interested reader can find more information on such problems with the 
emphasis on functional equations in [4-8].  

Let X and Y are two Banach spaces. Consider :  →f X Y  to be a 
mapping such that f (tx) is continuous in t∈ for each fixed x ∈ X. 
Assume that there exist constants ε ≥ 0 and p ∈ [0, 1) such that

( )|| ( ) ( ) ( ) || || || || ||ε+ − − ≤ +p pf x y f x f y x y

For all x, y ∈ X, Rassias [6] showed that there exists a unique


-linear mapping : →T X Y such that

2|| ( ) ( ) || || ||
2 2

ε
− ≤

−
p

pf x T x x

For all x ∈ X, A generalization of the theorem of Rassias was 
obtained by Gavruta [9] by replacing the unbounded Cauchy difference 
by a general control function : [0, )ϕ × → ∞G G in the spirit of Rassias 
approach.

In 1994, Alsina and Garcia-Roig [10] solved the conditional 
equation

f (x + y)=f (x) + f (y)               (1.1)

whenever ∥x∥=∥y∥ for continuous  mapping  f from a real inner 
product space (X, (.|.)) with dim X ≥ 2 into a real topological linear 
space Y. They recognized the connection between this equation and 
the orthogonally additive functional equation. They also obtained the 
linearity of such a function f in the case where Y=Rn.

Sikorska [11] studied a generalized stability of Cauchy and Jensen 
functional equations, where the respective Cauchy or Jensen differences 

are approximated by arbitrary functions. Moreover, [12] Sikorska 
solved the conditional Pexider functional equation on prescribed 
sets being generalizations of spheres. We refer the reader to [13-17] 
for some interesting results on the stability of conditional functional 
equations.

In this paper, we apply a fixed point theorem to prove the stability 
of conditional homomorphisms using contractively subhomogeneous 
and expansively superhomogeneous functions.

The paper is organized as follows. In Section 2, some necessary 
preliminaries and summarization of some previous known results 
are presented. The concepts of conditional homomorphism and 
conditional Jordan homomorphism in Lie C*-algebras are introduced. 
In Section 3, we deal with the stability of conditional homomorphisms 
and conditional Jordan homomorphisms in Lie C*-algebras. Finally, a 
conclusion is given in Section 4.

Preliminaries
Ger and Sikorska [18] solved the conditional functional equation 

(1.1) with the norm replaced by an abstract function fulfilling suitable 
conditions.

Theorem 2.1:  [18] Let X be a real linear space with dim X ≥ 2, (Y, 
+) be an abelian group, Z be a given nonempty set and let :γ →X Z
be an even mapping ( x) (x),x Xγ − = γ ∈  such that

(c1)  for any two linearly independent vectors x, y ∈ X there exist 
linearly independent vectors u, v ∈ Lin{x, y} such that γ (u+v)=γ (u−v),

(c2)  if x, y ∈ X, γ (x + y)=γ (x − y), then γ (αx + y)=γ (αx−y) for all
α ∈ ,

(c3)  for all x ∈ X and λ +∈ there exists a y ∈ X such that γ (x+y)=γ 
(x−y) and γ ((λ+1) x)=γ ((λ−1) x−2y). 
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If  :  →f X Y  satisfies the condition

γ (x)=γ (y)  implies   f (x + y)=f (x) + f (y),    x, y ∈ X ,

Then f is additive.

They dealt also with the Hyers-Ulam stability problem cf. [4,5] 
for such a more general version of (1.1). In order to make the above 
assumptions more readable, they gave the following example.

Example 2.2: Let (X, (.|.)) be a real inner product space with dim X 
≥ 2, ∈Z and γ (x)=∥x∥, x ∈ X. Then function γ satisfies (c1) − (c3).

A C*-algebra A endowed with the Lie product [x, y]=xy −yx on A is 
called a Lie C*-algebra. The stability problems of functional equations 
between C*-algebras have been investigated by a number of authors 
[19-22].

Definition 2.3: A


-linear mapping H of a Lie C*-algebra A to a 
Lie C*-algebra B is called a conditional homomorphism if

 H ([x, y])=[H (x), H (y)]                                    (2.1)

Holds for all x, y ∈ A with γ (x)=γ (y).

Definition 2.4: A  -linear mapping  :  →H A B  is said to be a 
conditional Jordan homomorphism if

H ([x, y] + [y, x])=[H (x), H (y)] + [H (y), H (x)]                          (2.2)

For all x, y ∈ A with γ (x)=γ (y).

For explicitly later use, we state the following theorem.

Theorem 2.5: (Banach) Let (X, d) be a complete metric space and 
consider a mapping  :  Λ →X X as a strictly contractive mapping, that 
is

d (Λx, Λy) ≤ Ld(x, y)

For all x, y ∈ X and for some (Lipschitz constant) 0<L<1. Then 
there exists a unique a ∈ X such that Λa=a. Moreover, for each x ∈ X,

lim
→∞

Λ =n

n
x a

and in fact for each x ∈ X,
1( , ) ( , ).

1
≤ Λ

−
d x a d x x

L
 

Let A, B be real vector spaces. We recall that if there exists a constant 

L with 0<L<1 such that a n−times mapping :ρ
−

= × × →




n times
nA A A B

satisfies





1 1( , , , , ) ( , , , , )ρ λ λ ρ
− −

≤ 

   

i th i th

n nx x x L x x x

For all x, xj ∈ A (1≤ ≠ ≤j i n ) and all positive integers λ, then 
we say that ρ is n-contractively sub homogeneous if ℓ=-1, and ρ is 
n-expansively superhomogeneous if l=−1. It follows by the above 
inequality that ρ satisfies the following properties:





1 1( , , , , ) ( ) ( , , , , ), ,ρ λ λ ρ
− −

≤ ∈ 

    

i th i th
k k

n nx x x L x x x k  

( , , ) ( ) ( , , )ρ λ λ λ ρ≤  

 

nx x L x x
For all x, xj ∈ A (1≤ ≠ ≤j i n ) and all positive integers λ.

Remark 2.6: If ρ is n-contractively sub-additive then ρ is 
contractively sub homogeneous of degree n and if ρ is n-expansively 
super-additive, then ρ is and expansively super homogeneous of degree n.

The Main Results
Throughout this section, let A and B be Lie C*-algebras, dim A ≥ 

2 and γ be an even mapping from A to a nonempty set Z, satisfying 
the conditions (c1) − (c3) and for all x, y ∈  A, γ (x)=γ (y) implies that 

(2 ) (2 )γ γ= x y where { 1,1}∈ −

. Let { }
0

1
1/ 0: ;0 2 /θ θ π= < <i

n e n .

Let 3: (0, )ϕ → ∞ be either 3-expansively super homogeneous 

mappings for ℓ=−1 or 3-contractively sub homogeneous mappings for 

ℓ=1, with constant 10 ( )
2

< = <L L . Let 2: (0, )φ → ∞ be either 2- 

expansively super homogeneous mappings for ℓ=−1 or 2 -contractively 
sub homogeneous mappings for ℓ=1, with constant 0<L=L (ℓ)<1.

Lemma 3.1: Let →  be an additive function such that f 
(tx)=t f (x) for all 

0

1
1/∈ nt  and x ∈ A. Then the function f is  -linear [23].

Theorem 3.2: Suppose that : →if    (i=1, 2, 3) are mappings 
fulfilling

1 2 3|| ( ) ( ) ( ) ( ) ( ) || ( , , ),ϕ+ − − + − ≤i if x y f x f y f tz tf z x y z                    (3.1)

1 2 3|| ([ , ]) [ ( ), ( )] || ( , )φ− ≤f x y f x f y x y                                                (3.2)

For all 
0

1
1/∈ nt  and x, y, z ∈ A with γ (x)=γ (y). If f3 is an odd 

mapping and fi (0)=0 (i=1, 2, 3), then there exists a unique conditional 
homomorphism : →H   such that

1

1 0|| ( ) ( ) || ( , ),
2(1 )

ψ
−

− ≤
−

Lf x H x x y
L

 

3

2 0
1|| ( ) ( ) || ( , ) ( , ,0) ( , ,0) ,

1 2
( )ψ ϕ ϕ

−

− ≤ + + −
−

Lf x H x x y x x x x
L

                (3.3)

3

3 0
1|| ( ) ( ) || ( , ) ( , ,0) ( , ,0) ,

1 2
( )ψ ϕ ϕ

−

− ≤ + + −
−

Lf x H x x y x x x x
L

Where the mapping 2: (0, )ψ → ∞ is defined by

0 0 0 0 0

0 0 0 0

0 0 0 0

( , ) ( , ,0) ( , ,0) ( , ,0) ( , ,0)

, ,0 , ,0
2 2 2 2

, ,0 , ,0
2 2 2 2

ψ ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

= + + − + −

+ + − −   + +   
   

+ − − +   + +   
   

x y x x y x x y y y
x y x y x y x y

x y x y x y x y

   (3.4)

For all x ∈ A and some y0 ∈ A for which x and y0 satisfy the condition 
(c3) with λ=1.

Proof:  We define

1

( ) ( )

|| ( ) ( ) ||
: , sup .

( , )γ γ ψ=

 −
= → < ∞ 
 x y

f x f xf
x y

  

Define d: Ɛ × Ɛ −→ [0, ∞] by

 
( ) ( )

|| ( ) ( ) ||( , ) sup .
( , )γ γ ψ=

−
=

x y

f x g xd f g
x y

It is easy to see that ( , )d is a complete metric space.  Let us 
consider the linear mapping :Λ →  defined by

1( ) (2 )
2

Λ = 



f x f x

For all x ∈ A. Let ,f g ∈ and let C ∈ [0, ∞) be an arbitrary constant 
with d (f, g)<C. From the definition of d, we have
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|| ( ) ( ) || '
( , )ψ
−

≤
f x g x C

x y

For all x, y ∈ A with γ (x)=γ (y). By the assumption and the last 
inequality, we get

|| ( ) ( ) || || (2 ) (2 ) |||| (2 ) (2 ) || 2 ( , ) '
( , ) (2 , 2 )

ψ
ψ ψ

Λ −Λ −
= − ≤ ≤

 

  

 

f x g x L f x g xf x g x x y LC
x y x y

For all x, y ∈ A with γ (x)=γ (y) and therefore

( , ) ( , ).Λ Λ ≤d f g Ld f g

So, Λ is a strictly contractive mapping with the Lipschitz constant L.

From (3.1) we have

1 2 3|| (2 ) ( ) ( ) || ( , ,0),− − ≤f x f x f x x x                   (3.5)

2 3|| ( ) ( ) || ( , ,0)ϕ+ − ≤ −f x f x x x                   (3.6)

For all x ∈ A

Let x ∈ A. By (c3) for λ=1, there exists y0 ∈ A such that γ (x + y0)=γ 
(x − y0) and γ (2x)=γ (2y0).

Hence

1 2 0 3 0 0 0|| (2 ) ( ) ( ) || ( , ,0),ϕ− + − − ≤ + −f x f x y f x y x y x y             (3.7)

1 2 0 3 0 0 0|| (2 ) ( ) ( ) || ( , ,0),ϕ− − − + ≤ − +f x f x y f x y x y x y             (3.8)

1 0 2 0 3 0|| 2( ) (2 ) (2 ) || (2 , 2 ,0).( ) ϕ+ − − ≤f x y f y f x y x                    (3.9) 

Also, by the evenness of γ we have

1 0 2 3 0 0|| 2( ) (2 ) ( 2 ) || (2 , 2 ,0).( ) ϕ− − − − ≤ −f x y f x f y x y              (3.10)

Substituting both x, y in (3.1) by x + y0 and x − y0, we have

1 0 2 0 3 0 0 0|| 2( ) ( ) ( ) || ( , ,0),( ) ϕ+ − + − + ≤ + +f x y f x y f x y x y x y   (3.11)

1 0 2 0 3 0 0 0|| 2( ) ( ) ( ) || ( , ,0).( ) ϕ− − − − − ≤ − −f x y f x y f x y x y x y    (3.12)

It follows from the inequalities (3.5) − (3.12) and the triangle 
inequality that

1 1 1 2 3|| (4 ) 2 (2 ) || || (4 ) (2 ) (2 ) ||− ≤ − −f x f x f x f x f x

1 0 2 0 3|| 2( ) (2 ) (2 ) ||( )+ − + + +f x y f y f x

1 0 2 3 0|| 2( ) (2 ) ( 2 ) ||( )+ − − + + −f x y f x f y

2 0 3 0|| (2 ) ( 2 ) ||+ − − −f y f y

1 0 2 0 3 0|| 2( ) ( ) ( ) ||( )+ + − + − +f x y f x y f x y

1 0 2 0 3 0|| 2( ) ( ) ( ) ||( )+ − − − − −f x y f x y f x y

1 2 0 3 0|| (2 ) ( ) ( ) ||+ − + + + −f x f x y f x y               (3.13)

1 2 0 3 0|| (2 ) ( ) ( ) ||+ − + − + +f x f x y f x y

0(2 ,2 ,0) (2 ,2 ,0)ϕ ϕ≤ +x x y x

0 0 0(2 , 2 ,0) (2 , 2 ,0)ϕ ϕ+ − + −x y y y

0 0 0 0( , ,0) ( , ,0)ϕ ϕ+ + + + − −x y x y x y x y

0 0 0 0( , ,0) ( , ,0)ϕ ϕ+ + − + − +x y x y x y x y

0(2 ,2 ).ψ= x y

If we replace x and y0 in (3.13) with 
2
x

 and 0

2
y , respectively, and 

divide by 2 the resulting inequality, then we have

1 1 0
1 1|| ( ) (2 ) || ( , ).
2 2

ψ− ≤f x f x x y            (3.14)

If we replace x and y0 in (3.13) with 
4
x

 and 0

4
y , respectively, and 

using 3-expansivity of φ, then
2

0
1 1 0|| ( ) 2 ( ) || ( , ) ( , ).

2 2 2 4
ψ ψ− ≤ ≤

yx x Lf x f x y               (3.15)

We can reduce (3.14) and (3.15) to
1

1 1 0
1|| ( ) (2 ) || ( , )

22
ψ

−

− ≤






Lf x f x x y

and then

11 1

0

1|| ( ) (2 ) ||
2 ,

( , ) 2ψ

−−
≤







f x f x L
x y

That is, 
1

1 1( , ) .
2

−

Λ ≤
Ld f f  By Theorem 2.5, there exists a unique 

mapping ∈H  which is the fixed point of

Λ and satisfies
1(2 )( ) lim .

2→∞
=





n

nn

f xH x

Also
1

1 1 1
1( , ) ( , )

1 2(1 )

−

≤ Λ ≤
− −

Ld f H d f f
L L

This yield
1

1 0|| ( ) ( ) || ( , ).
2(1 )

ψ
−

− ≤
−

Lf x H x x y
L

                            (3.16)

Let x ∈ A and y0 ∈ A be the element for which x and y0 satisfy the 
condition (c3) with λ=1. Utilizing the triangle inequality, the oddness of 
f3 and the inequalities (3.5) and (3.6), we infer that

2 1 1 2 3|| 2 ( ) (2 ) || || (2 ) ( ) ( ) ||− ≤ − + +f x f x f x f x f x

2 3|| ( ) ( ) ||+ + −f x f x                              (3.17)

( , ,0) ( , ,0),ϕ ϕ≤ + −x x x x                 

3 1 1 2 3|| 2 ( ) (2 ) || || (2 ) ( ) ( ) ||− ≤ − + +f x f x f x f x f x

2 3|| ( ) ( ) ||+ − − −f x f x                                         (3.18)

( , ,0) ( , ,0).ϕ ϕ≤ + −x x x x

Combining (3.17) and (3.18) with (3.16), we get

2 1 2 1|| 2 ( ) (2 ) || || (2 ) (2 ) || || 2 ( ) (2 ) ||,− ≤ − + −f x H x f x H x f x f x          

3 1 3 1|| 2 ( ) (2 ) || || (2 ) (2 ) || || 2 ( ) (2 ) || .− ≤ − + −f x H x f x H x f x f x         

Using the above inequalities and the fact that H (2x)=2H (x), we 
obtain
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3

2 0
1|| ( ) ( ) || ( , ) ( , ,0) ( , ,0) ,

1 2
( )ψ ϕ ϕ

−

− ≤ + + −
−

Lf x H x x y x x x x
L

            (3.19)

3

3 0
1|| ( ) ( ) || ( , ) ( , ,0) ( , ,0) .

1 2
( )ψ ϕ ϕ

−

− ≤ + + −
−

Lf x H x x y x x x x
L

         (3.20)

From the inequalities (3.17) and (3.18), we get

( 1) ( 1)
2 1|| 2 (2 ) 2 (2 ) ||− − + +−   n n n nf x f x

( 1)2 (2 ,2 ,0) (2 , 2 ,0) ,( )ϕ ϕ− +≤ + −    n n n n nx x x x

( 1) ( 1)
3 1|| 2 (2 ) 2 (2 ) ||− − + +−   n n n nf x f x

( 1)2 (2 ,2 ,0) (2 , 2 ,0)( )ϕ ϕ− +≤ + −    n n n n nx x x x

For all ∈n , whence

1 2 3(2 ) (2 ) (2 )( ) lim lim lim .
2 2 2→∞ →∞ →∞

= = =
  

  

n n n

n n nn n n

f x f x f xH x                (3.21)

Let x, y ∈ A with γ (x)=γ (y). By the assumption, (2 ) (2 )γ γ= x y
and then (2 ) (2 )γ γ= n nx y for all n ∈



. By 3-contractivity of φ we infer 
that

( )2
1 2 3|| 2 2 ( ) 2 (2 ) 2 (2 ) || 2 (2 ,2 ,0) 2 ( , ,0).( ) ϕ ϕ− − − −+ − − ≤ ≤

nn n n n n n n n nf x y f x f y x y L x y

And by 3-expansivity of φ we conclude that
2

1 2 3|| 2 2 ( ) 2 (2 ) 2 (2 ) || 2 (2 ,2 ,0) ( , ,0).
2

( ) ϕ ϕ− − − − −  
+ − − ≤ ≤  

 

n
n n n n n n n n n Lf x y f x f y x y x y

Since 1
2

<L , from n → ∞ in the above inequalities, one proves 

by (3.21) that H (x + y) − H (x) − H (y)=0. Hence H is conditionally 
additive.

In addition, it is clear from (3.1) that the following inequality

1 1
1|| ( ) ( ) || lim || (2 ) (2 ) ||

2→∞
− = − 



n n
nn

H tz tH z f tz tf z

1lim (0,0,2 )
2

ϕ
→∞

≤ 



n
nn

z

lim (0,0, ) 0ϕ
→∞

≤ =n

n
L z

Holds for all x ∈ A and
0

1
1/∈ nt  . By Lemma 3.1, H is  -linear.

We claim that the mapping H satisfies the functional equation 
(2.1). Define 2: →r   by r (x, y) =f1 ([x, y]) − [f2 (x), f3 (y)] for all x, y 
∈ A with γ (x)=γ (y). From (3.2) it follows that

(2 , )lim 0.
2→∞

=




n

nn

r x y                              (3.22)

Making use of (3.21) and (3.22), we get

1 1

2 3

2
3

3

2 [ , ] [2 , ]
[ , ] lim lim

2 2
[ (2 ), ( )] (2 , )lim

2
(2 ) (2 , )lim , ( )
2 2

[ ( ), ( )]

( ) ( )( )
→∞ →∞

→∞

→∞

= =

+
=

  
= +     
=

 

 

 



 

 

n n

n nn n

n n

nn

n n

n nn

f x y f x y
H x y

f x f y r x y

f x r x yf y

H x f y

                    (3.23)

For all x, y ∈ A with γ (x)=γ (y).

Now, letting x, y ∈ A with γ (x)=γ (y) and n∈ , by (3.23) and 
conditional additivity of H one obtains

3

3 3

[ ( ), (2 )] [ ,2 ] [2 , ]

[ (2 ), ( )] 2 [ ( ), ( )]

( ) ( )= =

= =

  

 

n n n

n n

H x f y H x y H x y

H x f y H x f y
 

This yield

3
3

(2 )( ), [ ( ), ( )].
2

 
= 

 





n

n

f yH x H x f y                    (3.24)

The comparison of the above equality with (3.23) shows that

3(2 )([ , ]) ( ), .
2

 
=  
 





n

n

f yH x y H x

For all x, y ∈ A with γ (x)=γ (y) and n∈ . Taking the limit as n → 
∞, we conclude that H ([x, y])=[H (x), H (y)]. This completes the proof 
of Theorem 3.2. 

In particular, given ( , , ) || || || || || ||( )ϕ ε= + +p p px y z x y z  and 

( , ) || || || ||( )φ θ= +p px y x y for ε, θ ≥ 0 and some real numbers p in the 

main theorem, one gets the following corollary.

Corollary 3.3:   Let : →if    (i=1, 2, 3) be mappings satisfying

1 2 3|| ( ) ( ) ( ) ( ) ( ) || || || || || || || ,( )ε+ − − + − ≤ + +p p p
i if x y f x f y f tz tf z x y z

1 2 3|| [ , ] [ ( ), ( )] || || || || ||( ) ( )θ− ≤ +p pf x y f x f y x y

For all 
0

1
1/∈ nt  and x, y, z ∈ A with ∥x∥=∥y∥, ε, θ ≥ 0 and real 

numbers p such that p<1 for ℓ=1 and p>1 for ℓ=−1. If f3 is an odd 
mapping and fi (0)=0 (i=1, 2, 3), then there exists a unique conditional 
homomorphism : →H    such that

1

(1 )( 1)
0 0

0( 1)

2

(3 )( 1)
0 0

0( 1)

3

(3 )( 1)
0

( 1)

|| ( ) ( ) ||

2 || || || || ,
2 22(1 2 )

|| ( ) ( ) ||

2 || || || || 2 || || ,
2 21 2

|| ( ) ( ) ||

2
1 2

ε

ε

ε

− −

−

− −

−

− −

−

−

 + −
≤ + + +  −  
−

 + −
≤ + + + +  −  

−

+
≤

−

 



 



 



p pp
p p

p

p pp
p p p

p

p

p

f x H x

x y x y
x y

f x H x

x y x y
x y x

f x H x

x y 0
0|| || || ||

2 2

2 || ||

 −
+ + +  
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(3.25)

For all x ∈ A and some y0 ∈ A for which x and y0 satisfy the condition 
(c3) with λ=1.

Proof: Let γ:=∥.∥ (cf. Example 2.2). Define φ and ϕ as above and 
apply Theorem 3.2 with L=2ℓ(p−1).

In the next theorem, we prove the Hyers-Ulam stability problem 
for conditional Jordan homomorphisms.

Theorem 3.4: Suppose that : →if    (i=1, 2, 3) are mappings 
satisfying the functional inequalities

1 2 3|| ( ) ( ) ( ) ( ) ( ) || ( , , ),ϕ+ − − + − ≤i if x y f x f y f tz tf z x y z

1 2 3 2 3|| [ , ] [ , ] [ ( ), ( )] [ ( ) ( )] || ( , )( ) φ+ − − ≤f x y y x f x f y f y f x x y   (3.26)

For all 
0

1
1/∈ nt  and x, y, z ∈ A with γ (x)=γ (y). If f3 is an odd 

mapping and fi (0)=0 (i=1, 2, 3), then there exists a unique conditional 
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Jordan homomorphism : →H   satisfying (3.3).

Proof: Applying a similar argument to the corresponding part of 
Theorem 3.2, we can conclude that there exists a unique conditional 
-linear mapping : →H   satisfying (3.3). Moreover,

1 2 3(2 ) (2 ) (2 )( ) lim lim lim
2 2 2→∞ →∞ →∞

= = =
  

  

n n n

n n nn n n

f x f x f xH x            (3.27)

For all x ∈ A. We will show that H satisfies the functional equation 
(2.2). Define 2: →r   by 1 2 3 2 3( , ) [ , ] [ , ] [ ( ), ( )] [ ( ), ( )]( )= + − −r x y f x y y x f x f y f y f x

for all x, y ∈ A with γ(x)=γ(y). It follows from (3.26) that

(2 , )lim 0.
2→∞

=




n

nn

r x y            (3.28)

By (3.27) and (3.28), we obtain

1

1

2 3 2 3

3 2

2 ([ , ] [ , ])
[ , ] [ , ] lim

2
[2 , ] [ , 2 ]

lim
2
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2
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f x y y x
H x y y x

f x y y x

f x f y f y f x r x y

H x f y f y H x

   (3.29)

For all x, y ∈ A with γ (x)=γ (y).

Now let x, y ∈ A with γ (x)=γ (y) and ∈n be fixed. By (3.29) and
conditional additivity of H, it can be shown that

3 2

3 2

3 2

[ ( ), (2 )] [ (2 ), ( )] [ , 2 ] [2 , ]

[2 , ] [ , 2 ]

[ (2 ), ( )] [ ( ), (2 )]

2 [ ( ), ( )] 2 [ ( ), ( )]

( )
( )

+ = +

= +

= +

= +

   

 

 

 

n n n n

n n

n n

n n

H x f y f y H x H x y y x

H x y y x

H x f y f y H x

H x f y f y H x

and then

3 2(2 ) (2 )( ), , ( ) [ , ] [ , ] .
2 2

( )   
+ = +   

   

 

 

n n

n n

f y f yH x H x H x y y x

Sending n to infinity, we obtain

[ , ] [ , ] [ ( ), ( )] [ ( ), ( )].( )+ = +H x y y x H x H y H y H x

This completes the proof of the theorem. 

Corollary 3.5: Let : →if    (i=1, 2, 3) be mappings satisfying

1 2 3|| ( ) ( ) ( ) ( ) ( ) || || || || || || || ,( )ε+ − − + − ≤ + +p p p
i if x y f x f y f tz tf z x y z

1 2 3 2 3|| [ , ] [ , ] [ ( ), ( )] [ ( ) ( )] || || || || ||( ) ( )θ+ − − ≤ +p pf x y y x f x f y f y f x x y

For all 
0

1
1/∈ nt  and x, y, z ∈ A with ∥x∥=∥y∥, ε, θ ≥ 0 and real 

numbers p such that p<1 for ℓ=1 and p > 1 for ℓ=−1. If f3 is an odd 
mapping and fi (0)=0 (i=1, 2, 3), then there exists a unique conditional 
Jordan homomorphism : →H    satisfying (3.25).

Proof: Define : || ||γ = ⋅ , ( , , ) || || || || || ||( )ϕ ε= + +p p px y z x y z  and
( , ) || || || ||( )φ θ= +p px y x y  apply Theorem 3.4 with L=2ℓ(p−1) .
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