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Introduction
It was recently proposed by the author, [1,2], to take into account 

the global one–dimensionality conjecture within quantum general 
relativity, where the global dimension is determinant of metric of a 
three-dimensional space embedded into four-dimensional space-time. 
Actually, this conjecture leads to the non-trivial model of quantum 
gravity which differs from the standardly considered approaches [3-
12].

The quantum-mechanical part of the global one-dimensional 
quantum gravity can be considered separately as a nice mathematical 
theory having possibly interesting physical ramifications. In and of 
itself this fragment of the model is globally one-dimensional quantum 
mechanics describing 3 + 1-decomposed solutions of the Einstein 
field equations of general relativity. In this theory quantum gravity is 
given by the one-dimensional Schrödinger equation, where the single 
dimension is the global dimension. The global quantum mechanics can 
be interpreted in terms of radial-type Schrödinger wave equation and, 
for this reason; it straightforwardly leads to the strict physical relation 
with atomic and nuclear physics.

In this paper few selected elements of the globally one-dimensional 
quantum mechanics are discussed in some detail. The generalized 
functional expansion of the effective potential and the residual 
approximation of the expansion, which corresponds to the embedding 
being the maximally symmetric three-dimensional Einstein manifolds, 
whose the physical meaning is reconstruction the Newton–Coulomb 
type potential within the model of quantum gravity, are considered. 

Few possible mathematical scenarios with respect to the form of the 
effective potential are suggested as possibly interesting from the 
theoretical physics point of view.

The content of this paper is as follows. In the Section 7 the global 
one-dimensional model of quantum gravity is briefly discussed, 
and its quantum mechanical part is presented in some detail. We 
start, in the Subsection 7.1, from the condensed presentation of 
the standard way resulting in the Wheeler–DeWitt equation of 
quantum Geometrodynamics which is the standardly considered 
model of quantum gravity and is the core fundament of all presently 
considered approaches. Then, in the Subsection 7.2, the idea of the 
global dimension, the resulting quantum mechanics, and the idea 
of the generalized functional expansion of the effective potential are 
presented. Next, in the Subsection 7.3, the idea of the invariant global 
dimension is digressed only, with no continuation in the further part of 
the paper. In the Section 8, the residual approximation of the effective 
potential, the role of maximally symmetric three-dimensional Einstein 
manifolds within the model of quantum gravity, and few conclusions 
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Abstract
The global one-dimensional quantum gravity is the model of quantum gravity which arises from the global one-

dimensionality conjecture within quantum general relativity, first considered by the author in 2010 and then in 2012. 
In this model the global dimension is a determinant of a metric of three-dimensional space embedded into an 
enveloping Lorentizan four-dimensional space-time. In 2012, it has already been presented by the author that this 
model can be extended to any Lorentzian D + 1-dimensional space-time, where D is a dimension of space, and 
resulting in the global one-dimensional model of a higher dimensional quantum gravity.

The purely quantum–mechanical part of this model is a minimal effective model within the quantum 
Geometrodynamics, introduced by J.A. Wheeler and B.S. DeWitt in the 1960s, but the effective potential is manifestly 
different from the one considered by Wheeler & DeWitt. Moreover, in our model the wave functionals solving the 
quantum gravity are one-variable smooth functions and, therefore, the troublesome mathematical technique of the 
Feynman functional integration present in the Hawking formulation of quantum gravity, is absent is this model, what 
makes it a mathematically consistent theory of quantum gravitation.

In this paper, we discuss in some detail a certain part of the global one-dimensional model already proposed in 
2010, and then developed in 2012. The generalized functional expansion of the effective potential and the residual 
approximation, which describe the embedded spaces which are maximally symmetric three-dimensional Einstein’s 
manifolds, whose lead to the Newton–Coulomb type potential in the quantum gravity model, are considered. 
Furthermore, scenarios related to few selected specific forms of the effective potential are suggested as physically 
interesting and discussed.
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having possibly interesting physical significance are discussed. The 
Section  7 is devoted to derivation of the ”geometric” wave functionals 
of the global quantum mechanics in terms of the special functions, with 
respect to the selected situations given by the three types of boundary 
conditions discussed one by one in the Subsections  7.1,  7.2, and  7.3. 
Finally, in the Section 8 we summarize briefly the paper.

Global One-Dimensional Quantum Gravity
Standard quantum geometrodynamics

In general relativity [13,14] a Lorentzian (pseudo–Riemannian) 
[15] manifold(M, g) with a metric and a distance 2 µ

µ= v
vds g dx dx

, where µx , µ=0,1,2,3 is a coordinate system, characterized by the 
Christoffel symbols µΓ

p
v  and curvatures: Riemann–Christoffel '

λ
µαvR  

Ricci Ricci 
'µvR  scalar R

( )

, ,

1 , , , ,
2

,

,

,

σ
µ

λ λ λ λ σ λ σ
µα µ α µα σα µ σ µα

λ
µ µλ

κλ
κλ

µσ σ µ µ σΓ = + −

= Γ −Γ +Γ Γ −Γ Γ

=

=

p
v

v v v v v

v v

g g v g v g v

R

R R

R g R

 (1)

is a space time being a solution of the Einstein field equations

,µ µ µκ+ Λ =v v vG g T 				                  (2)

Where κ  is the Einstein constant, 
1
2µ µ µ≡ −v v vG R Rg  is the Einstein 

tensor, Λ  is cosmological constant, and µvT  is stress-energy tensor of 
Matter fieldswhich arises through the variationprinciple [16] applied 
to the EinsteinHilbert action modified through the York–Gibbons–
Hawking boundary term [17,18]

1[ ] { } ,
2

µ µ
κ κ κ ∂

Λ
= ∫ − + + − ∫M M h

RS g d g d KL                    (3)

Where κ is the Gauss scalar curvature of a spacelike boundaryL0 

is the Lagrangian of Matter fields, and 4 3,µ µ= − =g hd d x g d d x h  are 
the invariant measures of four-dimensional space-time and embedded 
three-dimensionalspace, respectively.

Application of the Nash embedding theorem [19-22] allows 
justifying the 3+1 decomposition of spacetime metric [23-25] 

2

, ,µ δ
 − +

= = 
  

i
i j kj j

v ik i
i ij

N N N N
g h h

N h
               (4)

Where , ,i ijN N h  are respectively called the lapse function, the 

shift vector, and embedded space metric, =i ij
jN h N  is the intrinsic 

covariant shift vector. The 3+1 decomposition transforms the action 
functional (3) into the Hamiltonian form

3[ ] { },φπ φ π π π∂= ∫ + + + − −∫   

i ij i
M i ij iS g dt d x N N h NH N H     (5)

Where φ  symbolizes Matter fields, and nontrivial π’s, H,Hi are [26]

(3) 2

;

,( )
2

{ 2 2 } ,
2
2 ,

π
κ

κ
κ
π

=

= − −

+ − − Λ −

=

ij ij ij

ij
ij

i i j
j

H

h K Kh

h R K K K e

H

	                (6)

Where (3)R is the Ricci scalar of an embedding, µ
µ= v

ve n n T  

is the Matter fields energy related to the normal vector field 
[1/ , / ].µ = − in N N N  Extrinsic curvature ijK , where ,≡ijTrK K  is 

constrained by the equality

( | )2( ) ,= +

ij ij i jh NK N  				                  (7)

Where is symmetrized intrinsic covariant derivative of the shift. In 
accordance with DeWitt’s foundational considerations [27], Hi are the 
generators of the spatial diffeomorphisms δ= +

i i ix x x
3

, , , ,

3
, , ,

[ , ] ,

[ , ] ( ) ,π π π π
∂

∂

∫ = − − −

∫ = − + +

a k k k
ij M a ij k i kj i ik j

ij a ij k kj i ik j
M a k k k

i h H d x h h h

i H d x

ξ ξ ξ ξ

ξ ξ ξ ξ
 (8)

Where .= j
i ijH h H  Time-preservation [28] of the primary 

constraints 0π ≈  and 0π ≈i  leads to secondary ones-scalar and 
vector constraints

0,
0,

≈

≈i

H
H  					                     (9)

Which create nontrivial first-class type constraints algebra [27]

3 3 3
1 2 1, 2 1 2,

3

(3)
,

[ , ] ( ) ,

[ ( ), ( )] ,

[ ( ), ( )] ( , ),

δ δ δ δ δ δ

δ

∂ ∂ ∂

∂

∫ ∫ = ∫ −

= ∫

=

a
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a
i j M a ij

i i

i H x d x H x d x H x x x x d x

i H x H y H c d z
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 (10)

Where
(3) (3)
,[ , , ] ( , ) ( , ) ( , ),δ δ δ δ= = − ↔ ↔a a a b

ij ij i j bc c x y z x z y z i j x y  (11)

are structure constants of the diffeomorphism group and all Lie’s 
bracketsof π’s and H’svanish. Scalar constraint determines dynamics, 
vector one merely reflects diffeoinvariance. Making use of the conjugate 
momenta, first formula in (12), and the scalar constraint transforms 
into the Hamilton–Jacobi type equation

(3)( 2 2 ) 0 ,π π κ= + − Λ − ≈ij kl
ijklH G h R e                                  (12)

Where

1 ( ) ,
2

≡ + −ijkl ik jl il jk ij klG h h h h h h
h

 		                  (13)

is the DeWitt metric on the Wheeler super space, a factor space of all ∞c  
Riemannia metrics on ∂M , and a group of all ∞c  diffeomorphisms of 
∂M  that preserve orientation [29-31]. The Dirac–Faddeev primary 
canonical quantization method [28,32] in the present case has the form

(3)

(3)

(3)

1[ ( ), ( )] ( ) ( , ),
2

[ ( ), ( )] ( , ),

[ ( ), ( )] ( , ).

π δ δ δ δ δ

π δ δ

π δ

= +

=

=

ij i j i j
kl k l l k

i i
j j

i x h y x y

i x N y x y

i x N y x y

  	                 (14)

The solutions or rather representations of the momenta operators 
satisfying these canonical commutation relations is the question 
of choice. In quantum Geometrodynamics, the Wheeler metric 
representation is usually taken into account. In such a representation 
the momenta operators are analogous to the momentum operator in 
quantum mechanics
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and applied to the Hamiltonian constraint (12) lead to the Wheeler–
DeWitt equation [27,33] 

2
(3){2 ( 2 2 )} [ , ] 0 ,

2
δκ κ φ

δ δ κ
+ − Λ − Ψ =ijkl ij

ij kl

hG R e h
h h               (16)

and other first class constraints

[ , ] 0 ,

[ , ] 0 ,

[ , ] 0 ,

π φ

π φ

φ

Ψ =

Ψ =

Ψ =

ij

i
ij

i
ij

h

h

H h

 			    	            (17)

Merely reflect diffeoinvariance, and are not important for this 
model. Since about 60 years classical and quantum aspects of the 
Wheeler–DeWitt Geometrodynamics have studied widely (Cf. e.g. the 
books and collective volumes) in [3-12], and individual papers, [34-48].

The global dimension

The global one–dimensionality conjecture within quantum general 
relativity [1,2] assumes the effective physical role of the determinant 
of a three-dimensional space embedded into a four-dimensional 
spacetime

1det ,
3
ε ε= = ijk abc

ij ia jb kch h h h h  		              (18)

Where ε ijk  is the Levi-Civita density, and takes into account the 
following situation as physically interesting

( ) [ ],
( ) [ ],
[ , ] [ ].

φ φ
φ

φ

→
→

Ψ →Ψij

x h
e e h

h h
 				                (19)

In other words, it replaces the functional dependence on the space 
metric elements and Matter fields through the function dependence 
on the determinant of a space metric. Applying the transformation 
of variables to the →ijh h  Wheeler–DeWitt equation (16), one 
must change the functional differentiation with respect to ijh  by the 
classical differentiation with respect to h. It can be simply done through 
application of the Jacobi rule for differentiation of the determinant of 
four-dimensional metric µ

µδ δ= v
vg gg g  which leads to theresult

.δ δδ δ
δ δ

= → =ij ij
ij

ij

h hh h hh
h h

 			                (20)

More detailed explanation can be found in the [1].

Making few very elementary algebraic manipulations, one obtains 
from the equation (16) the globally one-dimensional quantum 
mechanics

2

2( [ ]) [ ] 0.δ
δ

+ Ψ =effV h h
h

 				                 (21)

Here [ ]effV h  is the effective potential

[ ] [ ] [ ] [ ] ,≡ + +eff G C MV h V h V h V h  			                (22)

This is a simple algebraic sum of the three fundamental energetic 
constituents

(3)

2

2

1[ ] ,
6
1[ ] ,

3
1 [ ][ ] ,

3

κ

κ

κ

= −

Λ
=

=

G

C

M

RV h
h

V h
h

e hV h
h

 				                 (23)

Related to pure geometry of an embedded three-dimensional space 
(G), cosmological constant (C), and Matter fields (M).

On the one hand, identification of the effective potential with 
the square of mass of the boson 2[ ] ≡effV h m  expresses the model 
of quantum gravity (21) as the classical theory of massive bosonic 
field [ ].Ψ h The construction of quantum field theory by the method 
of the static Fockreper of creators and annihilators, and related 
thermodynamics of quantum states can be also done elementary. 
This part of the model of quantum gravity was discussedin the 2012’ 
monograph by the author [1], and is not the main motive of this paper.

On the other hand, one can take into account the non-relativistic 
interpretation of the one-dimensional evolution (21), and treat 
the received global quantum gravity model as the effective one-
dimensional Schrödinger quantum mechanics with a certain selected 
effective potential being a functional of determinant of a three-
dimensional embedding. In the spirit of this approach the potential 

[ ]effV h  has intriguing meaning - (22) is the equality between “effective 
physics”, which can be constructed by other type considerations,and 
three basic constituents related to an embedding space – ”geometric”, 
”cosmological”, and ”material”.

Let us assume that the concrete form of effV  is fixed. Then one can 
express the Ricci scalar of a three-dimensional embedding as follows

(3) 22 [ ] 2 6 [ ],κ κ= + Λ − effR e h hV h  			                 (24)

and, therefore, the two last terms in the brackets can be treated as the 
dark energy density contribution

[ ] 3 [ ].κ
κ
Λ

= − effeDM h hV h  			               (25)

One can list several typical examples of the physical scenarios within 
the global one-dimensional model of quantum gravity, with respect to 
the concretely fixed form of the effective gravitational potential effV .

1. The case of the constant non-vanishing effective gravitational 
potential   In such a situation, the Ricci scalar curvature of the embedded 
space and the global one-dimensional quantum gravity aregiven by the 
equations

(3) 22 2 6 ,κ κ= Λ + − cR e hV  			                (26)

2

2( ) [ ] 0,δ
δ

+ Ψ =c cV h
h

 				                   (27)

Where [ ]Ψc h  a wave is functional related to .=eff cV V
2. The case of the trivial effective gravitational potential 0.=effV  In 

such a situation, the three-dimensional Ricci scalar curvature and the 
global one-dimensional quantum gravity are

(3) 2 2 ,κ= Λ +R e  				                (28)
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2

02 [ ] 0,δ
δ

Ψ =h
h

 				                 (29)

Where 
0Ψ  a “free” wave is functional related to 0.=effV

3. The case when the sum of the geometric and cosmological 
contributions is identically vanishing 0,+ =G CV V  but the material 
contribution does not vanish identically 0.≠MV  In such a situation, 
the three-dimensional Ricci scalar curvature and the global one-
dimensional quantum gravity are

(3) 2 ,= ΛR  					                  (30)

2

2 2

1 2( [ ]) [ ] 0,
6

δ κ
δ κ

− Ψ =Me h h
h h

 			                  (31)

Where ΨM  a “material” wave is functional related to the material 
contribution 0.≠MV

4. The case when the sum of the geometric and material 
contributions is identically vanishing 0,+ =G MV V  while in general the 
cosmologicalcontribution is non-trivial 0.≠CV  In such a situation, 
the Ricci scalar curvature of the embedded space and the global one-
dimensional quantum gravity are respectively

(3) 2 ,κ=R e  				     	             (32)

2

2 2

1 2( ) [ ] 0.
6

δ
δ κ

Λ
− Ψ =C h

h h
  			                (33)

Here ΨC  is the “cosmological” wave functional related to the 
cosmological contribution 0.≠CV

5. The case when the sum of the cosmological and material 
contributions is identically 0,+ =C MV V  vanishing whereas the 
geometric contribution is non-zero 0.≠GV  In such a situation, 
the energy density of Matter fields and the global one-dimensional 
quantum gravity are given by the equations

,
κ
Λ

= −e 					                     (34)

2 (3)

2 2

1 [ ] 0,
6

δ
δ κ
 

− Ψ = 
 

G
R h

h h
 			                  (35)

Where ΨG  is the “geometric” wave functional related to the 

geometric contribution VG ≠ 0.

6. A more general explicit form of the effective gravitational 
potential can be constructed in the spirit of complex analysis. Let 
us consider ad hoc functional generalization of the Laurent series 
expansion in the global dimension h of the effective gravitational 
potential Veff [h]

0[ ] ( ) ,
∞

−∞

= −∑ n
eff nV h a h h  				                (36)

in an infinitesimal neighborhood, i.e. in a one-sphere (circle) of radius  
∈h , of any ad hoc fixed initial value 0h  of the global dimension

0( ) { :| | }.∈= − <C h h h h h∈  			                (37)

The numbers an are the series coefficients determined by the 
classical functional integral

( ) 1
0

[ ]1 ,
2 ( )

δ
π ∈ +=

−∫ eff
n C h n

V h
a h

i h h
 			                    (38)

which is straightforward functional generalization of the Cauchy 
integral formula with the Lebesgue–Stieltjes measure–the classical 
functional Radon measure δh .

Let us take into considerations the most general choice of h0 which 
similarly to h is assumed to be a complex number. In such a situation, 
the Ricci scalar curvature of a three-dimensional embedded space takes 
the following form

(3) 2
02 2 6 ( ) ,κ κ

∞

−∞

= Λ + − −∑ n
nR e b h h  		                 (39)

where bn is the combined series coefficient

1 0 ( ) 1
0

1 [ ] ,
2 ( )

δ
π ∈− += + =

−∫n n n C h effn

hb a h a V h h
i h h

 (40)

and the global one-dimensional model of quantum gravity is then 
defined by the equation

2

02 ( ) [ ] 0.δ
δ

∞

−∞

 
+ − Ψ = 

 
∑ n

na h h h
h

 			              (41)

Making use of the triangle inequality one can write

1 0| | | | | || |−≤ +n n nb a h a  			                (42)

so that it can be deduced straightforwardly that

1
0

| | | | | | .
| | | |

−≤ +n n

n n

b a h
a a

 			                   (43)

Applying the well-known inequality for any Riemann integral

| | | |,≤∫ ∫f f  					                 (44)

where f is considered as the Riemann-integrable function and the 
integral is considered as defined, to the coefficients an and bn one 
obtains the inequality

( ) 11 1

1 1 1| | | | | |,
2

δ
π ∈ −+ +

∈ ∈

≤ ≤∫n C h effn na V h a
h h

                           (45)

where 1−a  is the residue of the effective gravitational potential at the 
fixed point 0=h h . This residue is determined by the straightforward 
functional generalization of the Cauchy integral formula

1 0 ( )
1Res( , ) ,

2
δ

π ∈− = = ∫eff C h effa V h V h
i

 		                  (46)

where ( )∈C h  traces out circle around the fixed point h0 in counterclockwise 
manner on the punctured disk 0{ : 0 | | }= < − <D z h h R . If the center of 
the circle 0−h h  is a pole of order n, then the residue is defined by the 
simple limiting procedure

( )
0

1

0 01

1Res( , )= ( ) .
( ) lim

δ
δ

−

−
→

−
Γ

n

eff effn
h h

V h h h V
n h

 	                 (47)

Making use of the following reasoning

( ) ( ) 11
0 0

1 1 1 1| | | |,
2 ( ) 2 ( )π π∈ ∈ −+

∈ ∈

= ≤ =
− −∫ ∫eff eff

n C h C h nn n

V V
a a

i h h h i h h h
 (48)

one sees that for any n the inequality holds

1| | ,
| |

−
∈≥n

n

a h
a

 			     	               (49)

and hence the inequality (43) can be rewritten as
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0
| | | | .
| | ∈≥ +n

n

b h h
a

 				                  (50)

In the light of the triangle inequality one can write

1 0 1 0 1| | | | | | | || |,+ + += + ≤ +n n n n nb a h a a h a  	             (51)

and because of the relation

1| | 1 ,
| |

+

∈

≤n

n

a
a h  				                 (52)

one receives the following relation

1 0| | | |1 .
| |

+

∈

≤ +n

n

b h
a h  				               (53)

Finally, application of the inequality (50) in the equivalent form

0

| | 1 .
| | | |∈

≤
+

n

n

a
b h h

 				                  (54)

lead us to the following upper bound

1 1 0

0

| | | | | | | |1 1 .
| | | | | | | |

+ +

∈ ∈

 
= ≤ + +  

n n n

n n n

b a b h
a b b h h h

 	              (55)

Another bound for 1| |
| |

+n

n

b
b

 can be obtained as follows. In the light of 

the definition (43) one can write

1

0

,−−
= n n

n
b aa

h
 				                 (56)

and, consequently, one can deduce the recursive relation for the 
coefficients bn

1
1 0 1

0

,−
+ +

−
= +n n

n n
b ab h a

h  			                  (57)

which after simple algebraic manipulations leads to the relation

0 1 1 0 1 .+ − ++ = +n n n nh b a h a b  			                    (58)

This equation can be rewritten as

0 1 1

0 1 0 1

1 ,+ −

+ +

= +
+ +

n n

n n n n

h b a
h a b h a b

 (59)

which after taking into account the triangle inequality gives the 
relation

0 1 1 0 1 1

0 1 0 1 0 1 0 1

,+ − + −

+ + + +

+ ≤ +
+ + + +

n n n n

n n n n n n n n

h b a h b a
h a b h a b h a b h a b

  (60)

which leads to the conclusion

0 1 0 1 1| | | || | | | .+ + −+ ≤ +n n n nh a b h b a  		               (61)

Once again, making use of the triangle inequality one has

0 1 0 1| | | || | | | ,+ ++ ≤ +n n n nh a b h a b  		               (62)

and, consequently,

0 1 0 1 1| || | | | | || | | | .+ + −− ≤ −n n n nh b b h a a  	               (63)

This inequality can be rewritten in the following form

1 1 1
0 0

| | | | | | | || | | | ,
| | | | | | | |

+ + −− ≤ −n n n n

n n n n

b b a ah h
a a a a  	              (64)

or more conveniently

1 1 1
0 0

| | | | | | | || | 1 | | .
| | | | | | | |

+ + − 
− ≤ − 

 
n n n n

n n n n

b a a ah h
b b a a  	              (65)

In the light of the inequality (54) and the relation

1 1 0
0

| | | | | || | ,
| | | |

+ −
∈

∈

− ≤ −n n

n n

a a hh h
a a h

 		                (66)

one obtains finally the following bound

1 0

0 0

| | | |1 11 ,
| | | | | |

+
∈

∈ ∈

  
≤ + −   +   

n

n

b h h
b h h h h  	                 (67)

which taken together with the previous result (55) allows to deduce the 
inequality for the fixed point

0 0| | (| | 1) 0 ,− ≥h h  				                  (68)

which can be resolved immediately and gives the consistency condition 
for the fixed point  

0| | {0} [1, ),∈ ∪ ∞h  				                  (69)

and in itself is a non-trivial solution of the initial data problem.

Naturally, there is plenty of other possibilities for the choice of a 
concrete form of the effective gravitational potential [ ]effV h . However, 
in the next section we shall discuss only a particular situation.

The invariant global dimension

Let us note that in general the global one-dimensional quantum 
mechanics (21) cane be transformed by the second change of variables

[ ],ξ→h h  					                    (70)

where [ ]ξ h  is any functional in the global dimension h. In this case one 
can rewrite the global one-dimensional wave equation (21) in the form

2 2

2

[ ] [ [ ]] [ [ ]] 0,
[ ]

δξ δ ξ ξ
δ δξ

    + Ψ =  
   

eff
h V h h
h h

 	               (71)

and if the coefficient 
2[ ]δξ

δ
 
 
 

h
h

 does not vanish identically (or the 

transformation (70) is non-singular) then the equation (72) can be 
rewritten as ξ

2

2 [ ] [ ] 0,δ ξ ξ
δξ
 

+ Ψ = 
 

V  			                    (72)

where the new potential [ ]ξV  is scaled effective potential effV  expressed 
by the new dimension  

1
2 [ ][ ] [ [ ]] [ [ ]] , [ [ ]] .δξξ ξ ξ ξ

δ

−
 = Ω Ω =  
 

eff
hV h V h h
h

             (73)

One sees easily that the following choice of the “gauge” [ ]ξ h   
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[ ] ,ξ ≡h h  				             	                (74)

Transforms the quantum mechanics (21) into itself. The choice 
of the transformation of variables in the form (74) is the simplest 
transformation of the kind [det ]ξ→ij ijh h  within the Wheeler–
DeWitt theory. Other, more advanced propositions, can be generated 
directly from this basic case, and should be justified by some rational 
arguments. Let us choose the transformation of variables in the form

[ ] .ξ =h h  					                  (75)

It is clear that this selection can be justified by the fact that h  
is the invariant volume element on an embedding with assumption 
that 0>h 1. In this manner the dimension h  has an invariant nature. 
The choice (75) yields the equation (72) with the following modified 
effective potential

2[ ] 4 [ ].ξ ξ ξ= effv V  				               (76)

Moreover, the singularity 
1
h

 evidently vanishes, but actually 

causes that [ ]V ξ  must be studied with respect to the new“invariant” 
dimension ξ .

The very good point of reference in searching for the dimension ξ  
is the normalization condition of the Schrödinger quantum mechanics, 
which for the considered situation takes the form of the Lebesgue–
Stieltjes/Radon integral

2
( , ) | [ [ ]] | [ ] 1,ξ δξΩ Ψ =∫ Ih h h h  			                (77)

Where ( , )Ω Ih h  some region of inerrability in a space of all three-
dimensional embedding is’ s with metric ijh  and a determinant 

det ijh h= . In fact this is the main condition for possible solutions of 
the studied model:

Proposition. Inerrability of the wave functional [ ]ξΨ  in the sense 
of functional integration in (77) determines the new dimension [ ]hξ .

The generalized dimension [ ]hξ  can be established in the region of 
inerrability ( , )Ω Ih h  as ( , )ξΩ Ih h  by using of the formula

( , ) ( , ) [ ].ξ δξΩ = Ω∫I I
h h h h h  			                (78)

In this paper we will study few consequences of the simplest choice 
(74). We will use standard argument which states that the normalization 
condition (77) establishes inerrability constants of an arbitrary solution 
of the Schrödinger theory. The model in the invariant global dimension 
was discussed in detail in the [1].

Newton–Coulomb Potential
Residual approximation

Let us consider the situation in which the series coefficients of the 
effective gravitational potential are

1 1
.

0 1
− = = −

=  ≠ −
n

a const for n
a

for n  			              (79)

We shall call such a case the residual approximation. In this 
approximation the effective gravitational potential (22) takes the form

1

0

,−=
−eff
aV

h h  (80)

which is formally the Newton–Coulomb potential, i.e. has the behavior 
like 1/ h  where h is interpreted as a kind of radial quantity. The value of 
the coefficient 1a−  is unknown, but it is assumed that this coefficient 
exists. It can be verified by straightforward easy calculation that in such 
a situation the combined series coefficients nb  are

1 0 1

0 1

1
0 ,

0 1,0

− −

−

= = −
= = =
 ≠ −

n

b h a for n
b b a for n

for n
 		             (81)

and, consequently, the Ricci scalar curvature of the three-dimensional 
space becomes

(3) 2 0
1

0

2 2 6 1 ,κ κ −

 
= Λ + − + − 

hR e a
h h

 		               (82)

Where as the equation (21), defining the global one-dimensional 
model of quantum gravity. Takes the form

2
1

2
0

0.δ
δ

− 
+ Ψ = − 

a
h h h

 			                (83)

The Ricci scalar curvature (88) defines certain states of the geometry 
of the three-dimensional embedded space. However, even when one 
considers the case of vacuum, i.e. when both the energy density of 
Matter fields and cosmological constant are identically vanishing 

0, 0e = Λ = , it is rather difficult to establish a three dimensional metric 
tensor for which the Ricci scalar curvature behaves like

(3) 0

0

1 .+
−
hR

h h
∼  				              (84)

Interestingly, in the most general situation the residue of the three-
dimensional Ricci scalar curvature calculated at a fixed point 0h  is

(3) 2
0 0 1 0Res( , ) 2 Res( , ) 6 ,R h e h a hκ κ −= −  		              (85)

i.e. it can be taken ad hoc identical to zero if and only if the residue of 
the energy density of Matter fields is

0 1 0Res( , ) 3 .κ −=e h a h  				                 (86)

If one takes ad hoc the following relation

1 2 ,
3κ−

Λ
=a  					                 (87)

Then the Ricci scalar curvature of an induced three-dimensional 
geometry of embedded space takes the form

(3) 0

0

22 ,κ Λ
= −

−
hR e

h h
 				               (88)

and its residue at a fixed point 0h  
(3)

0 0 0Res( , ) 2 Res( , ) 2 ,κ= − ΛR h e h h  		            (89)

Identically vanishes if and only if the residue of the energy density 
of Matter fields at a fixed point 0h  has the value

0 0Res( , ) .
κ
Λ

=e h h  				                (90)

In such a situation, also the geometry of an embedded three-
dimensional space manifold is automatically Ricci-flat if and only if the 
energy density of Matter fields takes the following form

1for 0h < , h   should be replaced by | |h , and we do not lose generality.
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0

0

.
κ
Λ

=
−
he

h h
 				                    (91)

It is easy to see that another possible Ricci-flat three-dimensional 
manifold is obtained for the identically vanishing cosmological 
constant 0Λ =  and the following value of the energy density of Matter 
fields

0
1

0

3 1 .κ −

 
= + − 

he a
h h

 				                     (92)

Newton–Coulomb quantum gravity
In the most general situation three-dimensional spaces having 

induced metrics characterized by the Ricci scalar curvature of the form 
(84) are not yet known explicitly in literature. However, it is evident 
that in the particular situation 0 0h = , which is fully consistent with 
the general condition (69), the state of affairs is determined by much 
more simplified equations

(3) 2
12 2 6 ,κ κ −= Λ + −R e a  			                (93)

2
1

2 0.δ
δ

− 
+ Ψ = 

 

a
h h

 				                  (94)

Let us consider this particular case as the basic situation. We shall 
call the global one-dimensional quantum gravity described by the 
system of equations (93)-(94) the Newton–Coulomb quantum gravity.

As an example, we shall consider first the case of constant Ricci 
curvature. It is not difficult to see that in the most general view such 
a situationcorresponds to the identically vanishing energy density of 
Matter fields

0.≡e  					                   (95)

We shall call such a case the Newton–Coulomb stationary quantum 
gravity. In such particular situation, the Ricci scalar curvature of three-
dimensional embedded space becomes

(3) 2
12 6 ,κ −= Λ − =R a const  			               (96)

and, consequently, the Ricci curvature tensor, which characterizes the 
intrinsic geometry of the manifolds, describes the three-dimensional 
Einstein manifolds [49]

,λ=ij ijR h  					                 (97)

where λ  the sign of the Einstein manifolds, in these specific conditions, 
is completely defined by parameters of the Newton–Coulomb 
stationary quantum gravity–the cosmological constant and the residue 
of the effective gravitational potential–as follows

2
1

2 2 .
3

κ λ−Λ − =a  				                (98)

Interestingly, the crucial consequence of identical vanishing of the 
energy density of Matter fields is the property of maximal symmetry of 
the Einstein manifolds described by the sign (98). For this reason, the 
Newton–Coulomb stationary quantum gravity possesses highly non-
trivial geometrical interpretation: such a situation describes embedded 
three-dimensional manifolds which are maximally symmetric Einstein 
manifolds.

Consequently, one can deduce straightforwardly the classification 
of the three-dimensional embedded spaces, which are maximally 

symmetric three-dimensional Einstein manifolds (97), with respect 
to the value of the sign λ  (98) of a manifold in dependence on the 
cosmological constant and the residue 1a− :

Conclusion (Classification of maximally symmetric 
three-dimensional Einstein manifolds)

The Newton–Coulomb stationary quantum gravity, defined by 

the effective gravitational potential 1[ ] −=eff
aV h
h

, determines the 

threedimensional embedded spaces which are the maximally symmetric 
three-dimensional Einstein manifolds, characterized by the sign of the 
form (98). There is the classification of such manifolds with respect to 
the cosmological constant Λ  and the value 1a−  of the residue of the 
effective gravitational potential

1. If the sign of manifold is non-zero 0λ ≠  and the residue of 
the effective gravitational potential is a negative real 1 | |α− = −a , then the 
effective gravitational potential [ ]effV h  corresponds to the Newtonian 
attractive potential energy

1 2| | .α
= − −eff

m mV
h h

∼  			                (99)

a) If the cosmological constant is a positive real | |Λ = + Λ   then 
the maximally symmetric Einstein three-manifolds are characterized 
by the positive Ricci scalar curvature

(3) 22 | | 2 | | .
3

κ α= Λ +R  			               (100)

b) If the cosmological constant is a negative real | |Λ = − Λ  then 
the maximally symmetric Einstein three-manifolds are characterized 
by the Ricci scalar curvature

(3) 22 | | 2 | | .
3

κ α= − Λ +R  			                (101)

Which is
2

(3) 2

2

0, | | 3 | |
0, | | | |
0, | | 3 | |

κ α

κ α

κ α

< Λ >

= Λ =
> Λ <

iff
R iff

iff
 			                (102)

2. If the sign of manifold is non-zero 0λ ≠  and the residue of the 
effective gravitational potential is a positive real | |= + , then the 
effective potential [ ]effV h  becomes the Coulomb repulsive potential 
energy

1 2| | .α
=eff

q qV
h h

∼  				                  (103)

a) If the cosmological constant is a negative real | |Λ = − Λ  then 

the maximally symmetric Einstein three-manifolds are characterized 
by negative Ricci scalar curvature

(3) 22 | | 2 | | .
3

κ α= − Λ −R  			               (104)

b) If the cosmological constant is a positive real | |Λ = + Λ   then 
the maximally symmetric Einstein three-manifolds are characterized 
by the Ricci scalar curvature

(3) 22 | | 2 | | .
3

κ α= Λ −R  			                 (105)
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Which is
2

(3) 2

2

0, | | 3 | |
0, | | | |
0, | | 3 | |

κ α

κ α

κ α

< Λ <

= Λ =
> Λ >

iff
R iff

iff
 			              (106)

3. If the sign of manifold is identically vanishing¸ 0λ = , i.e. 
the maximally symmetric Einstein three-manifolds are Ricci-flat 
manifolds, then one can determine uniquely the value of the residue of 
the effective gravitational potential as follows

1 2

| | .
3κ−

Λ
= ±a  				                  (107)

In such a situation, one obtains the values of the cosmological 
constant

1 2

1 2

( ) ( ) for the Newton law
| |

( ) ( ) for the Coulomb law
Λ 


g g

e e

r m r m
r q r q

∼                          (108)

where m is the mass of a body generating Newtonian gravitational 

field in vacuum and 2

2( ) =g
Gmr m
c

 is its gravitational radius, q 

is the charge generating Columbic electrical field in vacuum and 

4
0

( )
4π

=
∈g
Gr q q

c
 is its electrical radius.

Note that, in fact, by taking into account ad hoc the relation for the 
series coefficients (38), the residue 1a−  of the effective gravitational 
potential is the Cauchy integral of effV  at a fixed point 0 0h =  

( )(3)
1 2

1 1Res 2 2 , 0 ,
6

κ
κ−

 = − + Λ + =  
a R e h

h
 	           (109)

and its value can be straightforwardly established as

( )(3)
1 02

(3)
0 0

2 2 2

1 2 2
6

,
6 3 3

κ
κ

κ
κ κ κ

− == − + Λ +

Λ
= − + +

ha R e

R e
 		               (110)

where subscript “0” means the value of a quantity calculated in 0=h .

Let us note that, when one shall to associate the residual effective 

potential 1[ ] −=eff
aV h
h

 with any realistic quantized Kepler problem, 

i.e. with employing the Newtonian or the Columbic potentials, 

one should to identify the global dimension with a spatial distance 
2 2 2= + +r x y z  

,≡h r  					                  (111)

In this case, with the formal identification of the functional 
derivative of h and the classical derivative of r, i.e. in fact the equality 
between the functional and classical integral measures δ =h dr  well–
known in classical mechanics [50], the wave functional [ ]Ψ h  becomes 
the radial wave function [ ]Ψ r , and the evolution (83) becomes familiar 
radial type Schrödinger equation

2

2

| | ( ) 0,α 
+ Ψ = 

 

d r
dr r

 			                  (112)

Where the number | |α  can be taken straightforwardly from the 
Newton law of gravitation or from the Coulomb law of electricity. The 
received wave equation (112) possibly describes an atomic system.

Note that there are many possible choices of the metrics ijh  with 
the same value of the determinant =h r . For instance one can take the 
simple variant

1/3 .δ=ij ijh r  				                  (113)

However, more generally, one can parameterize the relation (111) 
by SO(3) group rotation matrix 1/3: ,=ij ij ijr h r r , which allows use the 
Eulerian angles ( , , )θ ϕ φ  as follows

(3) (2) (3)( , , ) ( ) ( ) ( ),θ ϕ φ θ ϕ φ≡ij il lk kjr r r r  		             (114)

Where matrices ( ) ( )ϑp
ijr  are rotation matrices around the selected 

p-axis

(3) (2)

cos sin 0 cos 0 sin
( ) sin cos 0 , ( ) 0 1 0 .

0 0 1 sin 0 cos

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ ϑ

−   
   = =   
   −   

ij ijr r     (115)

This point of view was discussed in much advanced detail in the [1].

Geometric Wave Functionals
In this section we shall consider certain solutions of the global 

one-dimensional model of quantum gravity (21) for the case of the 
residual approximation of the effective gravitational potential effV  
implemented in the previous section. In the most general situation, the 
considered quantum mechanical evolution

2

2

| | [ ] 0,δ α
δ
 

Ψ = 
 



 h
h h

 			                (116)

is solved by two types of wave functions Ψ  where the attractive 

wave functions [ ]−ΨG h  are associated with the Newton-like effective 
gravitational potential, and the repulsive ones [ ]+Ψ h  are associated 
with the Coulomb-like effective gravitational potential. Because of the 
manifest one-dimensionality of the functional evolutionary equation 
(116), one can solve this equation in the framework of the theory of 
ordinary differential equations by interpretation of the functional 

derivative as the ordinary one, i.e. δ
δ

=
d

h dh
, and the wave functional 

as a wave function [ ] ( )Ψ = Ψh h  with no loss of generality.

In this manner, the problem to solve is given by the second order 
ordinary differential equation

2

2

| | [ ] 0,α 
Ψ = 

 




d h
dh h

 				                 (117)

This is well-known in the mathematical physics literature. The 
general solution of such a differential equation can be constructed 
straightforwardly by making use of the Bessel functions n nJ and Y  for 
the case of the attractive potential

( ) ( )1 1 2 1[ ] | | 2 | | 2 2 | | ,− − − Ψ = + G h a h C J a h iC Y a h     (118)

And in terms of the modified Bessel functions n nI and K  for the 
case of repulsive potential

( ) ( )1 1 2 1[ ] | | 2 | | 2 2 | | ,+ + + Ψ = − + G h a h C I a h C K a h     (119)
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Where 1
+C  and 2

+C  are constants of integration, one takes standard 
definitions [51] of the Bessel functions of first and second kind, 

( ) ( )α αJ x and Y x ,

0

1( ) cos ( cos ),
π

α α
π

= −∫J x dt x t t  			              (120)

( ) cos( ) ( )( ) ,
sin( )

α α
α

απ
απ

−−
=

J x J xY x  			               (121)

And the modified Bessel functions of first and second kind, 
( ) ( )α αI x and K x ,

0

1( ) exp ( cos ) cos( ),
π

α α
π

= ∫I x dt x t t  		               (122)

( ) ( )( ) .
2 sin( )

α α
α

π
απ

− −
=

I x I xK x 			                 (123)

Standardly, values of the second kind Bessel functions and modified 
ones for any integer’s n can be received by application of the limiting 
procedure ( ) lim ( ), ( ) lim ( ).α α α α→ →= =n n n nY x Y x K x K x  

In further parts of this section we shall to present solutions of the 
quantum mechanics (116) with respecting of few selected boundary 
conditions for the general solutions (118) and (119).

Boundary conditions I

Let us consider the global one-dimensional quantum mechanics 
(21) with the boundary conditions for some selected initial value of the 
dimension := Ih h  

[ ] , [ ] .δ
δ
Ψ ′Ψ = Ψ = ΨI I I Ih h
h

 			                 (124)

With using of the regularized hyper geometric functions pFq

1

1
1

1
1

,...,

;
,...,

,...,
; ,

( )... ( )
,...,

 
 
       =  Γ Γ 

 





p

p
q

q
q

a a
pFq x

a a
b b

pFq x
b b

b b

 	              (125)

1
1

0 1
1

,...,
( ) ...( )

; ,
( ) ...( ) !

,...,

∞

=

 
 

= 
 
 

∑

p r
r p r

r r q r
q

a a
a a x

pFq x
b b r

b b
 	             (126)

( )( ) ,
( )

Γ +
≡

Γr
a ra

a
 				                (127)

One can write out the general solutions (118) and (119) with 
respect to the boundary conditions (124)

( ) ( ) ( ) ( )2

1 1 2 1 20
2 | | 2 | | 2 | | ;| | ,α α α α− − − −Ψ = + 

G C h K h C h F h     (128)

Where the sign - in the hyper geometric function notation means 
that all ( ) 1=ra , and the constants

( ) ( )1 0 1 1 0 1 2;| | ;| | ,α α− − −′= Ψ −Ψ 

I I I I IC F h h F h  	             (129)

( ) ( )2 0 1
1 2 | | 2 | | ,
2 | |

α α
α

−  
′= Ψ +Ψ  

 
I

I I I I
hC K h K h  	               (130)

for Newtonian case, and

( ) ( ) ( ) ( )2

1 1 2 1 20
2 | | 2 | | 2 | | ;| | ,α α α α+ + + −Ψ = + 

G C h Y h C h F h     (131)

With constants

( ) ( )( )1 0 1 2 0 1 1; | | ;| | ,
2
π α α+ − −′= Ψ − −Ψ 

I I I I IC h F h F h             (132)

( ) ( )2 0 12 | | 2 | | ,
2 | |
π α α

α
+  

′= Ψ +Ψ  
 

I
I I I I

hC Y h Y h  	              (133)

For Columbic case.

Boundary conditions II

The second case which we want to present in this paper, are the 
boundary conditions for 1st and 2nd functional derivatives

2

2[ ] , [ ] .δ δ
δ δ
Ψ Ψ′ ′′= Ψ = ΨI I I Ih h
h h

 			              (134)

By using of the hypergeometric functions, one can express the 
solution for attractive case as follows

( ) ( ) ( ) ( )2

1 1 2 1 20
2 | | 2 | | 2 | | ;| | ,α α α α− − − −Ψ = + 

G C h K h C h F h     (135)

Where 
1
+C  and 2

+C  are constants defined as

( ) ( )1 0 1 2 0 1 1;| | ;| | ,
| |

α α
α

− − −′′ Ψ′= − Ψ − 
 

 

I
I I I IC h F h F h                    (136)

( ) ( )2 0 1
1 2 | | 2 | | .
2 | | | |

α α
α α

−  
′′ ′= Ψ +Ψ  

 
I I

I I I I
h hC K h K h  	                (137)

Similarly for the repulsive case one obtains easily

( ) ( ) ( )2

1 1 2 10
2 | | 2 | | 2 | | ;| | ,

2
α α α α+ + +

− 
 Ψ = +  
 
 



G C h Y h C h F h     (138)

With constants

( ) ( )1 0 1 2 0 1 1; | | ; | | ,
2 | |
π α α

α
+ − −′′ Ψ′= Ψ − + − 

 
 

I I
I I I

hC F h F h                (139)

( ) ( )2 0 12 | | 2 | | .
4 | | | |
π α α

α α
+  

′′ ′= Ψ +Ψ  
 

I I
I I I I

h hC Y h Y h              (140)

Boundary conditions III

The last possible case of boundary conditions for the considered 
problem is

2

2[ ] , [ ] .δ
δ
Ψ ′′Ψ = Ψ = ΨI I I Ih h
h

 		              (141)

These conditions are formally improper for the problem; because 
of the lead to singular solutions. In this case, however, one can present 
the solutions in the form with formally singular constants. For the 
attractive potential one has

( ) ( ) ( )2

1 1 2 10
2 | | 2 | | 2 | | ;| | ,

2
α α α α− − −

− 
 Ψ = +  
 
 



G C h K h C h F h     (142)

With constants ( 0)∈→  

1 1
0

2 | | ;| | ,
| |

2
α α

α
−

− 
   ′′= Ψ − Ψ   ∈    

 



I
I I I I

hC h F h  	               (143)
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( )2 1
1 2 | | ,

| |
α

α
−  ′′= Ψ − Ψ ∈ 

I
I I I

hC K h  	             (144)

And similarly for the repulsive potential one obtains

( ) ( ) ( )2

1 1 2 10
2 | | 2 | | 2 | | ; | | ,

2
α α α α+ + +

− 
 Ψ = + − 
 
 



G C h Y h C h F h     (145)

With constants ( 0)∈→  

1 1
0

2 | | ; | | ,
| |

2
α α

α
+

− 
   ′′= Ψ + Ψ −   ∈    

 



I
I I I I

hC h F h  	              (146)

( )2 1
1 2 | | ,

| |
α

α
+  ′′= Ψ + Ψ ∈ 

I
I I I

hC Y h 	             (147)

However, when the following relation for the boundary conditions 
holds

[ ,| |],
| |

α
α

± ±′′± Ψ +Ψ ≡∈ ±I
I I I

h f h  		               (148)

Where [ ,| |] 0α± ≠If h  are some (now unknown and arbitrary) 

nonsingular functional of Ih  and | |α , the sign + is related to 
the Newtonian case, and the sign - to the Columbic one, then the 
singularity of the solutions (142) and (145) is canceling. In this case the 
initial value Ψ I  for the attractive case is

( )

( )

0 1 1 11

1 2 0 11

| | ;| | 2 | | [ ,| |] 2 | |
2

2 | | 2 | | | | [ ,| |] ;| | ,
2

α α α α α

α α α α α

− −

−

− 
  Ψ = − + ∈ − +     

 
 −  
  + +∈ −  

    

∫

∫

I

I

h

I I I

h

I I

dth F h C f t K t
t

h K h C dtf t F t

 (149)

And similarly for the repulsive one

( )

( )

0 1 1 11

1 2 0 11

| | ; | | | | [ ,| |] 2 | |
2

2 | | 2 | | | | [ ,| |] ; | | ,
2

2

α α π α α α

πα α α α α

+ +

+

− 
  Ψ = − −∈ + +     

 
 −  
  + −∈ + −  

    

∫

∫

I

I

h

I I I

h

I I

dth F h C f t Y t
t

ii h Y h C dtf t F t

 (150)

Where 1,2
±C  are nonsingular constants of integration. The functional   

[ ,| |] 0α± ≠If h can be established by application of the condition 

(148) within the general solutions (142) and (145). It yields the results

( )1 10
8 | | 2 | | ;| | [ ,| |],

2
α α α α−

− 
 Ψ = − 
 
 



I I I I Ih K h F h f h  (151)

( )1 10
8 | | 2 | | ; | | [ ,| |].

2
α α α α+

− 
 Ψ = − + 
 
 



I I I I Ih Y h F h f h  (152)

Employing straightforwardly these results into the equalities (149) 
and (150) one obtains the integral equations for the functional ±f . For 
the columbic situation one receives the following equation

( ) ( )

( )

( )

( ) ( )

1
1 2 10

1 0 11

1 10 1

1 10

2 | | ;| | 2 | |
4

2

| | 2 | | ;| |
2

;| | 2 | | [ ,| |]
2

2 2 | | 2 | | ;| | [ ,| |],
2

α α α

α α α

α α α

α α α α

−
−

− 
 − + + 
 
 

 − 
  +∈ −  
  

 
−  

 − − = 
 

  
− 
 = − 
 
 

∫

∫



I

I

I I I

h

I

h

I I

I I I I

C h F h C K h

K h dt F t

dth F h K t f t
t

h K h F h f h

           (153)

And similarly for the Newtonian case one derives the relation

( ) ( )

( )

( )

( ) ( )

1
1 2 10

1 10 1

1 0 11

1 10

2 | | ; | | 2 | |
4

2

| | ; | | 2 | |
2

2

2 | | ; | | [ ,| |]
2

2 2 | | 2 | | ; | | [ ,| |].
2

α α α

π α α α

α α α

α α α α

+
+

− 
 − + − 
 
 

 − 
  −∈ − +  
  

 
−  

 + − + = 
 

 
− 
 = − + 
 
 

∫

∫



I

I

I I I

h

I I

h

I

I I I I

C h F h iC Y h

dth F h Y t
t

iY h dt F t f t

h Y h F h f h

 (154)

In both the cases the integral operators acting on the functional  
±f  are nonsingular. By this reason one can put straightforwardly 

the formal limit ( 0)∈→  in the integral equations (153) and (154), and 
by doing few elementary algebraic manipulations one can extract the 
searched functionals. The final results are as follows

( ) ( )
1 2

1 1

/ 8 / 4[ ,| |] ,
2 | | 2 | |

α
α α

− −

−

−
= +I

I I

C Cf h
K h I h

 	               (155)

( ) ( )
1 2

1 1

/ 8 / 4[ ,| |] ,
2 | | 2 | |

α
α α

+ +

+ = +I
I I

C iCf h
Y h J h

 	                (156)

In this manner the initial data conditions for the considered 
boundary conditions (141) cannot be chosen arbitrary, but according 
to the rules

( ) ( )1 1 2 1| | 2 | | 2 2 | | ,α α α− − − Ψ = − + I I I Ih C I h C K h            (157)

( ) ( )1 1 2 1| | 2 | | 2 2 | | .α α α+ + + Ψ = + I I I Ih C J h iC Y h              (158)

The supposed equation for boundary values (148) is not unique, 
and can be replaced by other conditions. The discussed case, however, 
reflects the typical questions arising within the problem.

Discussion
In this paper we have discussed the quantum mechanical model of 

quantum gravity arising from the global one–dimensional conjecture 
within quantum general relativity considered recently by the author [1]. 
This model straightforwardly bases on the effective potential (22) being 
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a simple algebraic sum of three fundamental energetic constituents - 
”geometric”, ”cosmological”, and ”material”, with nontrivial change 
in potential behavior with respect to the initial model that was the 
Wheeler–DeWitt quantum Geometrodynamics (16). The relation 
between the models is established by change of both the differential 
operator and the potential.

We have considered the analytical form of the effective potential, 
and concentrated an especial attention on the physical conclusions 
following from the residual effective potential, which on some well-
established conventional level is directly identified with the attractive 
Newton’s gravitation or the repulsive Coulomb’s electrostatics. 
Studying of this special case allowed concluding that in the case of 
Matter fields’s energy absence, in the global one–dimensional model 
of quantum gravity, the maximally symmetric three-dimensional 
Einstein manifolds are the characteristic embedding for the residual 
effective potential. Finally, we have found some solutions of the model 
of quantum gravity in the residual approximation.

We hope to discuss further conclusions of the global-one 
dimensional model of quantum gravity in the next contributions.
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