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Overview
Many scientifically relevant problems share two salient features. 

First, they are dynamic; second, they involve uncertainty. Hence, 
it is natural that researchers would be concerned with the study of 
events taking place in stochastic dynamic settings. In these settings, 
the decision-maker will typically want to select optimal paths for an 
array of control variables in order to maximize or minimize the current 
value of a sequence of future expected outcomes. In this article, we 
defend the argument that exploring techniques and applications in the 
field of stochastic optimal control theory is vital for the advancement 
of applied science. Although solid steps have been taken, in the last 
few years, to consolidate the theory of stochastic controls and to make 
this an adequate tool to address many important problems in multiple 
fields of knowledge, further work is still necessary to accomplish new 
insights and to unveil new results in an area of extreme complexity, 
where the search for efficient paths is many times hampered by the high 
degree of underlying uncertainty.

The benchmark optimization problem

Stochastic optimal control problems are concerned with the inter-
temporal optimization (maximization or minimization) of an objective 
function subject to one or more constraints that, in continuous time, 
acquire the form of stochastic differential equations. The objective 
function typically respects to the expected value of a sequence of utility 
levels that range from the initial date t=0 to some future horizon. In 
the case of economic problems, the horizon is commonly assumed as 
infinite and the future is discounted at a constant rate ρ>0. Taking the 
autonomous case, for which time is not an explicit argument of the 
problem’s functional, the objective function acquires the following 
shape,
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Function : n mf × →    is assumed to be a real-valued
continuous and differentiable function. Two categories of variables 
constitute the arguments of f, namely the state variables, ( ) nx t ∈
and the control variables, ( ) mu t ∈ . State variables are those that
have their laws of motion determined by the differential equations 
respecting to the problem’s constraints; control variables are the 
ones that the decision-maker is able to control in order to pursue the 
specified dynamic goal.

The constraints underlying the optimization problem are, 
as mentioned above, stochastic differential equations. A generic 
specification is the following,
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In equation (2), : :n m n n m n mandg σ ×× → × →      . The 

term B(t) is an m-dimensional stochastic process defined in a filtered 
probability space { }( )0

Ù, , ,P
≥t t

  . Frequently, the stochastic process
takes the form of a Wiener process or Brownian motion. The formal 
definition of Brownian motion is as follows:

If, for all 0≤s<t, B(t)-B(s) is independent of the stopping time 
σ-algebra Fs and is normally distributed with mean 0 and variance-
covariance matrix (t-s)I, with I an m×m identity matrix, then B(t) is 
a Brownian motion. The two mentioned properties are presentable in 
the form:

( ) ( )( )| 0,P a.s.− = −sE B t B s    (3)
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Roughly speaking, one might say that a Brownian motion is a 
normally distributed stochastic process with stationary independent 
increments. By adding the Brownian motion to an otherwise multi-
dimensional deterministic differential equation, the time trajectories 
of the problem’s endogenous variables will no longer correspond to 
deterministic paths; instead, the trajectories will exhibit persistent 
fluctuations around the non-stochastic trend. Instead of a Brownian 
motion, one may consider other types of stochastic processes in order 
to build a stochastic differential equation. A popular alternative is a 
Poisson process. A Poisson process, also known as counting process or 
pure jump process, is a stochastic process q(t) such that 
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Parameter λ>0 is designated arrival rate. The Poisson process 
implies that the state variables in the stochastic differential equations 
are subject to jumps at random dates. This kind of process is useful 
to model phenomena as technological progress, where uncertainty 
concerning the arrival date of new innovations and about the extent of 
such innovations exists. Other types of, more sophisticated, stochastic 
processes might also be included in the constraints of the optimal 
control problem, namely Lévy processes, which combine features of 
the Brownian motion and of the Poisson process2.
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In control problems involving a constant discount of future rewards and an infinite 
horizon are designated as reinforcement learning problems.

For a systematic and thorough analysis of Lévy processes. Lévy processes are 
also designated by the term jump diffusions.
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Independently of the stochastic process that best describes the 
type of randomness associated to the evolution of the assumed 
state variables, the optimal control stochastic problem will typically 
correspond to the maximization of U(0) as given by expression (1) 
subject to a series of n stochastic constraints, as those in equation (2). 
In its generic form, this is not a simple problem to solve. Nevertheless, 
under some simplifications and constraints, this framework is able 
to deliver meaningful results that answer challenging questions that 
are posed by events taking place in nature, in the society and in the 
economy. 

A Brief Note on General Solution Techniques 
The most common technique to approach and solve stochastic 

optimal control problems consists in the construction of the respective 
Hamilton-Jacobi-Bellman (HJB) equation, which applies to the 
optimization problem in its generic form. 

Let 

( ) ( ) ( ) ( )( ) ( )0 0
max , expu tV x E f x t u t t dtρ

+∞ = −  ∫                   (6)

Given V(x), the HJB equation takes the form of a non-linear 
ordinary differential equation,
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HJB equations are not always tractable from an analytical point 
of view, namely when the dimensionality of the underlying system is 
high or when the problem involves nonlinear constraints. The general 
stochastic control problem, as presented above, is, in fact, intractable to 
solve, requiring an unreasonable quantity of computational resources. 
Common algorithms demand millions of iterations for a task to be 
learned in the context of such generic problem.

Recent relevant advancements in the treatment of stochastic 
controls have allowed, on one hand, for a deeper understanding of 
the implications of the general problem and, on the other hand, for 
a rigorous and detailed analysis of some meaningful particular cases. 
For instance, Horowitz [1] takes a more insightful look at the HJB 
equation and develops algorithms that are capable of dealing directly 
with the optimal solutions of high dimensional nonlinear systems. 
Previously, Kappen et al., Todorov et al., and Theodorou et al., [2-5] 
have discovered that particular assumptions on the structure of the 
dynamic system make it possible to transform the HJB equation into 
a linear equation, allowing for analytical tractability. Specifically, the 
work by Kappen [2,3] indicates that an efficient solution is attainable 
when the control problem is defined in a finite horizon, the control 
term is linear and additive and the cost of the control is quadratic. 
Another form of approaching stochastic optimal control problems in 
order to deliver important insights is through state space discretization, 
what transforms the problem into a Markov decision process. In 
discrete time, the problem becomes easier to deal with, since it avoids 
the consideration of partial differential equations, which are typically 
difficult to analyze and often imply the impossibility of determining 
explicit analytical results [6].  

Some Specific Applications and Contributions
Stochastic control techniques may be applied to any inter-temporal 

optimization problem for which the decision-maker has the faculty of 
controlling partially the environment and chooses to attain a specific 
goal. In Kappen [7], control problems are associated with animal 
behavior. Living organisms, including human beings, employ cognitive 
resources to take decisions. Frequently, these are not static decisions, 

what implies the need to revisit the problem at successive time periods.  
Therefore, there is a recurrent process of adaptation and learning. 
Control theory studies how living organisms optimize a sequence of 
actions to attain inter-temporal goals. Because future events are not 
known with certainty, the optimization process implies the assumption 
of a probabilistic model of the expected outcomes. At each time 
step, given the uncertain outcome, the agent must re-estimate the 
trajectories of the control variables, and in this way one might state 
that there is a close link between adaptation and learning, on one 
hand, and stochastic optimization, on the other. Besides individual 
decision-making that takes place at the level of the brain, stochastic 
control might also be applied to scenarios where multiple agents have 
to solve a task. Besides optimization in time, this setting requires also 
the optimal coordination of the agents’ actions. An example of this type 
of problem and the exploration of the respective outcomes is offered by 
Wiegerinck et al. [8]. The problem is one in which there is a common 
goal but where agents act in a decentralized way, choosing the paths 
that desirably lead to an optimal distribution of the agents across a 
given number of targets. 

The prototypical example concerning multi-agent optimal control 
presented in the mentioned paper respects to a problem of firemen 
allocation across a number of active fires. Stochastic control techniques 
allow encountering a solution that is optimal from the social point of 
view, i.e., a solution such that firemen do not tend to concentrate in 
the same fires; on the contrary, they are able to distribute themselves 
in the direction of different final locations just by observing the 
trajectories followed by others. This is an interesting problem because 
it can be straightforwardly adapted to many situations that arise in 
society and in the economy: although agents behave on their own 
interest, their ultimate goal can only be accomplished by maximizing 
the performance of the group or the team. For instance, one could 
extend this framework in order to explain how market relations are 
organized or how different individuals choose different transportation 
to commute in an urban area. In fact, optimal control allows dealing 
with every stochastic environment in which agents have to distribute 
themselves efficiently over a number of targets. Again, the complexity 
of the problem emerges from the underlying uncertainty: in a stochastic 
environment, a configuration that is apparently optimal at t=0 may no 
longer be optimal at a future date.

In the field of economics, one of the most popular applications 
of stochastic optimal control is the one proposed by Merton [9]. 
In Merton’s model, a representative consumer selects efficient 
consumption and portfolio investment strategies over a long time 
horizon. Uncertainty is, in this case, associated to a risky asset for 
which the expected return and the volatility are estimated. This model 
basically consists in the adaptation of the Ramsey model, i.e., of the 
utility maximization problem of the representative agent facing a 
resource constraint, to a stochastic environment. 

A related area where stochastic controls have been applied with 
success is neoclassical growth theory. In a stochastic growth model, 
the standard benchmark framework is modified in order to account 
for uncertainty in technological progress. As in the deterministic case, 
growth can be explained through the analysis of a capital accumulation 
differential equation, but now this becomes a stochastic differential 
equation Brock et al., and Merton et al., for the analytical treatment of 
this model [10,11]. 

Why Stochastic Controls?
As highlighted by Horowitz [1], in control theory the ultimate 
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objective is to direct the system under appreciation towards a specified 
goal. The system involves laws of motion for the state variables, which 
constrain the choices of the agent solving the problem. The agent 
has, however, at her disposal, a set of control variables that constitute 
signals that she may manipulate in order to achieve the intended goals. 
Control theory is, then, concerned with designing efficient and robust 
solutions for the problem at hand, i.e., it is concerned with defining 
optimal time trajectories for the available control variables. At a first 
glance, optimal control problems do not seem too difficult to approach. 
In theory, one knows the initial state of the system, the inter-temporal 
goal to fulfill and the constraints that are faced by the problem solver. 
The fundamental point, though, is that one is dealing with the future; 
the plan is set now, at t=0, for an horizon that starts at t=0 and extends 
to a pre-defined future date. Therefore, as emphasized by Kappen 
[7], the control problem is stochastic in nature. There is uncertainty 
associated with future outcomes and the best the agent can do is to 
compute the optimal trajectory of some control variable(s) contingent 
on how the system is supposed to evolve. It is the stochastic element 
that sophisticates the problem and makes it hard to approach. 

A deterministic plan can be solved at the initial period and never 
revised, because nothing in the environment will presumably change. 
Stochastic controls require a permanent revaluation of the dynamic 
conditions as these potentially depart from expected values. When 
evolving from determinism to stochasticity one loses in tractability 
but one surely gains in realism. The relevance of approaching plans 
through the lenses of stochastic optimal control is not exhausted in the 
determination of optimal paths. It is also important to guarantee their 
stability. Stabilization methods in the presence of uncertainty must 
also be an issue in mind when addressing this type of problems. This 
is also a concern that optimal control theorists have, as highlighted by 
Horowitz [1]. 

In synthesis, stochastic dynamic optimization problems are a 
significant part of the decision problems one finds in nature, in the 
society and in the economy. As a consequence, it is undoubtedly of 
extreme relevance to continue to build the tools and to explore the 
applications that somehow fall in the extremely rich scientific domain 
that is stochastic controls. 

Literature
The modern theory of optimal control starts with Bellman et al. 

[12]; it is also Bellman [13] who presents the first results on stochastic 
controls. Since then, many important results have come to light. 
Today, there is a vast literature on stochastic optimal control, which 
is synthesized in some volumes that constitute the main references in 
this area. These include, just to cite a few, Kamien et al. [14], Yong and 
Zhou [15], Kendrick [16], Bertsekas [17,18] and Oksendal and Sulem 
[19].  Walde [20-22] offers a comprehensive presentation of dynamic 
optimization models in economics. In four parts, the book addresses 
deterministic optimization in discrete and continuous time and 
stochastic optimization in discrete and continuous time. Concerning 
stochastic optimal control problems in continuous time, it is explained, 
in this manuscript, in a simple mode, what a stochastic process is, how 
a stochastic process might integrate a stochastic differential equation 
and how the shape of the stochastic differential equation depends on 
the type of stochastic process (Brownian motion, Poisson process or 
Lévy process). A similar discussion may be found in Brito [23].
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