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Nonlinear Differential Equation
Introduction

The power series method (PSM) is classical in resolution of differ-
ential equations. For a nonlinear differential equation, such as 

du/dt=f(u), u(t0)=C,          (1)

where f(u) is an analytical nonlinearity, the PSM requires to expand 
the nonlinear function of a power series into a power series. Adomian 
and Rach [1,2] gave the formula we require
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where An, depending on a0, a1, . . . , an, are called the Adomian 
polynomials, which were defined as [3]
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We note that the Adomian polynomials were initially used in the 
Adomian decomposition method [3,4], and they are expressed in the 
components uj of the Adomian decomposition series. The PSM com-
bined with the Adomian polynomials is called the modified decom-
position method [5]. For practical calculation and programming, the 
Adomian polynomials can be expressed as
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The first five Adomian polynomials are

A0=f(a0),

A1=f′(a0)a1,

A2=f′(a0)a2 + f′′(a0) 
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where k
nC   are the sums of all possible products of k components 

from a1, a2, • • • , an−k+1, whose subscripts sum to n, divided by the fac-
torial of the number of repeated subscripts [6], which is called Rach’s 
Rule [7,8]. 

Other different algorithms for the Adomian polynomials have been 
developed by Rach [9], Wazwaz [10], Abdelwahid [11], and several oth-
ers [12-17].

New Fast Algorithms and Applications
We review the new fast algorithms for the Adomian polynomials. In 

[15-17] recursion relations for k
nC   in (5) have been presented. 

Algorithm 1 [15].
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where p1 →  p1 + 1 stands for replacing 
1 1 1

1 1 , 1 0.
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Algorithm 2 [17].
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In the two algorithms the recursion operation does not involve the 
differentiation, but only requires the operations of addition and mul-
tiplication, which greatly facilitates calculation and programming. In 
most practical cases, the exact solution of a nonlinear differential equa-
tion is unknown. We obtain the m-term approximation for the solution 
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With the fast algorithms for the Adomian polynomials we can ef-
ficiently calculate the ( )m tφ   for large m. Further we can use the ac-
celeration convergence techniques, such as the Pad´e approximants and 
the iterated Shanks transforms, to extend the effective region of conver-
gence and increase the accuracy for the approximate solution.

Another important application is to derive the high-order numeric 
scheme for nonlinear differential equations more efficiently. For each 
subinterval [ti, ti+1] we apply the m-term approximation ( )m tφ  (t; ti,
Ci), where i=0, 1, . . . , and C0 is the initial value while Ci, i>0, is the value 
at t=ti of the last approximation ( )m tφ (t; ti−1,Ci−1).

For the MATHEMATICA subroutine for generating the Adomian 
polynomials and further readings we suggest readers to refer to [16-18].
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