On the Fundamental Theorem in Arithmetic Progression of Primes

Jiang CX*
Institute for Basic Research, Palm Harbor, P. O. Box 3924, Beijing 100854, P. R. China

Abstract
Using Jiang function we prove the fundamental theorem in arithmetic progression of primes. The primes contain only \(k < P_i + 1 \) long arithmetic progression, but the primes have no \(k > P_i + 1 \) long arithmetic progressions theorem.

Keywords: Arithmetic; Lie theory; Fundamental theorem; Progression; Asymptotic formula

Theorem
The fundamental theorem in arithmetic progression of primes.

We define the arithmetic progression of primes [1-3].

\[
P_{i+1} = P_i + \omega_k, k=0, 1, 2, \ldots, \omega_{P_i} - 1,
\]

(1)

Where \(\omega_k = \prod_{P \leq k} P \) is called a common difference, \(P_{i+1} \) is called \(g \)-th prime.

We have Jiang function [1-3]:

\[
\omega_k \equiv (q + \omega_k) \equiv 0 \pmod{P},
\]

(2)

\(X(P) \) denotes the number of solutions for the following congruence:

\[
\prod_{i=1}^{k-1} (q + \omega_k) \equiv 0 \pmod{P}.
\]

(3)

Where \(q=1, 2, \ldots, P-1 \).

If \(P \mid \omega_k \), then \(X(P)=0, X(P)=k-1 \) otherwise. From eqn (3) we have:

\[
J_2(\omega) = \prod_{P \leq \omega_k} (P - 1) \prod_{P \leq -k} (P - k).
\]

(4)

If \(k= P_i \), then \(J_2(P_i) = 0, J_2(\omega) = 0 \), there exist finite primes \(P_i \) such that \(P_{i+1}, \ldots, P_{P_i} \) are primes. If \(k < P_i \), then \(J_2(\omega) \neq 0 \), there exist infinitely many primes \(P_i \) such that \(P_{i+1}, \ldots, P_{P_i} \) are primes. The primes contain only \(k < P_i \) long arithmetic progression, but the primes have no \(k > P_i \) long arithmetic progression geometry. We have the best asymptotic formula [1-3]:

\[
\pi_{\omega_k}(N, 2) = \frac{J_2(\omega) \omega_k^{-1}}{\phi(\omega)} \frac{N}{\log^2 N} (1 + o(1)).
\]

(5)

Where \(\omega = \prod_{P \leq \omega_k} P, \phi(\omega) = \prod_{P \leq -k} (P - 1), \omega \) is called primorial, \(\phi(\omega) \) Euler function.

Suppose \(k= P_i - 1 \). From eqn (1) we have:

\[
P_{i+1} = P_i + \omega_k, j=0, 1, 2, \ldots, P_i - 2.
\]

(6)

From eqn (4) we have [1-2]:

\[
J_2(\omega) = \prod_{P \leq \omega_k} (P - 1) \prod_{P \leq -P_i + 1} (P - P_{P_i}) \rightarrow \infty \quad \text{as} \quad \omega \rightarrow \infty
\]

(7)

We prove that there exist infinitely many primes \(P_i \) such that \(P_{i+1}, \ldots, P_{P_i} \) are primes for all \(P_i \).

From eqn (5) we have:

\[
\pi_{\omega_k-1}(N, 2) = \frac{\prod_{P \leq \omega_k} (P - 1) \prod_{P \leq -P_i + 1} (P - P_{P_i})}{(P - 1) \omega_k^{-1}} \frac{N}{\log^2 N} (1 + o(1)).
\]

(8)

From eqn (8) we are able to find the smallest solutions \(\pi_{\omega_k-1}(N, 2) > 1 \) for large \(P_{P_i} \).

Theorem is foundation for arithmetic progression of primes.

Example 1: Suppose \(P_i=2, \omega_i=2, P_{23}=3 \). From eqn (6) we have the twin primes theorem:

\[
P_i = P_i + 2.
\]

(9)

From eqn (7) we have:

\[
J_2(\omega) = \prod_{P \leq \omega_k} (P - 2) \rightarrow \infty \quad \text{as} \quad \omega \rightarrow \infty
\]

(10)

We prove that there exist infinitely many primes \(P_i \) such that \(P_i \) are primes. From eqn (8) we have the best asymptotic formula [4-6]:

\[
\pi_{\omega_k-1}(N, 2) = \frac{\prod_{P \leq \omega_k} (P - 1) \prod_{P \leq -P_i + 1} (P - P_{P_i})}{(P - 1) \omega_k^{-1}} \frac{N}{\log^2 N} (1 + o(1)).
\]

(11)

Twin prime theorem is the first theorem in arithmetic progression of primes.

Example 2: Suppose \(P_i=3, \omega_i=2, P_{23}=5 \). From eqn (6) we have:

\[
P_i = P_i + 6, i=0, 1, 2, 3.
\]

(12)

From eqn (7) we have:

\[
J_2(\omega) = \prod_{P \leq \omega_k} (P - 4) \rightarrow \infty \quad \text{as} \quad \omega \rightarrow \infty
\]

(13)

We prove that there exist infinitely many primes \(P_i \) such that \(P_i \) are primes. From eqn (8) we have the best generalized asymptotic formula:

\[
\pi_{\omega_k-1}(N, 2) = \frac{\prod_{P \leq \omega_k} (P - 1) \prod_{P \leq -P_i + 1} (P - P_{P_i})}{(P - 1) \omega_k^{-1}} \frac{N}{\log^2 N} (1 + o(1)).
\]

(14)

Example 3: Suppose \(P_i=23, \omega_i=223092870, P_{23}=29 \). From eqn (6) we have:

*
*Corresponding author: Jiang CX, Institute for Basic Research, Palm Harbor, P. O. Box 3924, Beijing 100854, P. R. China, Tel: +1-727-688 3992; E-mail: jcxuan@sina.com

Received March 10, 2017; Accepted April 17, 2017; Published April 27, 2017

Copyright: © 2017 Jiang CX. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
From eqn (7) we have:
\[J_z(\omega) = 36495360 \prod_{P \neq z} (P - 28) \to \infty \text{ as } \omega \to \infty. \]
(16)

We prove that there exist infinitely many primes \(P \) such that \(P, P^3, \ldots, P^m \) are primes. From eqn (8) we have the best asymptotic formula [7]:
\[\pi_m(N, 2) = \prod_{P \neq 2, 3} \left(\frac{P}{P - 1} \right)^{\frac{27}{\log N}} \prod_{P \neq 2, 3} \left(\frac{P^2 - (P - 28) N}{(P - 1)^2} \right)^{(1 + o(1))}. \]
(17)

From eqn (17) we are able to find the smallest solutions \(\pi_m(N, 2) > 1 \).

On May 17, 2008, Wroblewski and Raanan Chermoni found the first known case of 25 primes:
\[6171109491283631 + 366384 \times \omega_5, \omega_7, \ldots, \omega_{24} \]
for \(n = 0 \) to 24.

Theorem can help in finding for 26, 27, 28, \ldots, primes in arithmetic progressions of primes.

Corollary 1: Arithmetic progression with two prime variables.

Suppose \(\omega = d \). From eqn (1) we have:
\[P_j P_k = P_j^{(k-1)} P_k - d, \ldots, P_j = P_j + (k-1) d, \quad (P, d) = 1 \]
(18)

From eqn (18) we obtain the arithmetic progression with two prime variables: \(P_j, P_k, P_j^{(k-2)}, \ldots, P_j = P_j + (k-1) d \).

We have the best asymptotic function [3]:
\[J_z(\omega) = \prod_{P \neq (P - 1)} \left((P - 1) \right)^{-1} \right) = 3 \]
(22)

We prove that there exist infinitely many primes \(P_j, P_k, P_{j+1}^{(k-2)} \) such that \(P_j, P_k, P_{j+1} \) are primes for \(3 < k < P_{j+1} \).

We have the best asymptotic formula [8]:
\[\pi_{x}(N, 3) = \frac{(1 + o(1))}{\log^3 N} \]
(23)

From eqn (23) we have the best asymptotic formula:
\[\pi_{x}(N, 3) = \prod_{P \neq (P - 1)} \left(\frac{P^2 - (P - 1)^2 + 1}{(P - 1)^2} \right) \frac{N^3}{\log^3 N} \left(1 + o(1) \right). \]
(24)

From eqn (24) we are able to find the smallest solution \(\pi_{x}(N, 3) > 1 \) for large \(k < P_{j+1} \).

Example 4: Suppose \(k = 3 \) and \(P_{j+1} > 3 \). From eqn (19) we have:
\[P_j = 2P_j^3 - P_j. \]
(25)

From eqn (22) we have:
\[J_z(\omega) = \prod_{P \neq (P - 1)} (P - (P - 2)) = \infty \text{ as } \omega \to \infty. \]
(26)

We prove that there exist infinitely many primes \(P_j, P_k, P_{j+1} \) such that \(P_j, P_k, P_{j+1} \) are primes. From eqn (24) we have the best asymptotic formula:
\[\pi_{x}(N, 3) = 2 \prod_{P (P - 1)} \left(1 + \frac{1}{(P - 1)} \right) \frac{N^3}{\log^3 N} \left(1 + o(1) \right) \]
(27)

Example 5: Suppose \(k = 4 \) and \(P_{j+1} > 4 \). From eqn (19) we have:
\[P_j = 2P_j^3 - P_j, P_k = 3P_j^3 - 2P_j. \]
(28)

From eqn (22) we have:
\[J_z(\omega) = 2 \prod_{P \neq (P - 1)(P - 3)} \to \infty \text{ as } \omega \to \infty. \]
(29)

We prove that there exist infinitely many primes \(P_j, P_k, P_{j+1} \) such that \(P_j, P_k, P_{j+1} \) are primes. From eqn (24) we have the best asymptotic formula:
\[\pi_{x}(N, 3) = \frac{9}{2} \prod_{P \neq (P - 1)} \frac{P^4 - (P - 1)^4}{\log^3 N} \left(1 + o(1) \right). \]
(30)

Example 6: Suppose \(k = 5 \) and \(P_{j+1} > 5 \). From eqn (19) we have:
\[P_j = 2P_j^3 - P_j, P_k = 3P_j^3 - 2P_j, P_{j+1} = 4P_j^3 - 3P_j. \]
(31)

From eqn (22) we have:
\[J_z(\omega) = 2 \prod_{P \neq (P - 1)(P - 4)} \to \infty \text{ as } \omega \to \infty. \]
(32)

We prove that there exist infinitely many primes \(P_j, P_k, P_{j+1} \) such that \(P_j, P_k, P_{j+1} \) are primes. From eqn (24) we have the best asymptotic formula:
\[\pi_{x}(N, 3) = \frac{27}{2} \prod_{P \neq (P - 1)} \frac{P^4 - (P - 1)^4}{\log^3 N} \left(1 + o(1) \right). \]
(33)

Corollary 2: Arithmetic progression with three prime variables.

From eqn (18) we obtain the arithmetic progression with three prime variables: \(P_j, P_k, P_{j+1} \).

We have the best asymptotic function [3]:
\[J_z(\omega) = \prod_{P \neq (P - 1)^3} \left(1 + o(1) \right) \]
(35)

\[X(P) \]

\[\prod_{j=1}^{\infty} (q_j + (j - 3) q_{j+1} - (j - 3) q_{j+2}) = 0 \mod P \]
(36)

Where \(q_j = 1, 2, \ldots, P_{j+1} - 1, \quad i = 1, 2, 3. \)

Example 7: Suppose \(k = 4 \) and \(P_{j+1} > 4 \). From eqn (34) we have:
\[P_j = 2P_j^3 - P_j. \]
(37)

From eqns (35) and (36) we have:
\[J_z(\omega) = \prod_{P \neq (P - 1)(P - 3)} \to \infty \text{ as } \omega \to \infty. \]
(38)

We prove that there exist infinitely many primes \(P_j, P_k, P_{j+1} \) such that \(P_j, P_k, P_{j+1} \) are primes. We have the best asymptotic formula:
\[\pi_{x}(N, 4) = \frac{2}{3} \prod_{P \neq (P - 1)} \left(1 + o(1) \right) \]
(39)

For \(k \geq 5 \) from eqns (35) and (36) we have Jiang function:
\[J_z(\omega) = \prod_{P \neq (P - 1)(P - 3)} \to \infty \text{ as } \omega \to \infty. \]
(40)

We prove that there exist infinitely many primes \(P_j, P_k, P_{j+1} \) such that \(P_j, P_k, P_{j+1} \) are primes for \(5 \leq k < P_{j+1} \).
We have the best asymptotic formula:
\[\pi_{\leq}(N, 4) = \left\lfloor \frac{P_k + (j-3)P_j - (j-3)P_j}{4} \right\rfloor \text{prime}, \quad 4 \leq j \leq k, P_j, P_{j}, P_k \leq N \]
\[= \frac{J_4(\omega)\omega^{-3}}{\varphi(\omega)} \log^4 N (1 + o(1)). \]
(41)

From eqn (41) we have:
\[\pi_{\leq}(N, 4) = \prod_{P_j \leq x} P_j^3 \left[(P - 1)^2 - (P - 2)(k - 3) \right] \frac{N^4}{\log^4 N (1 + o(1))}. \]
(42)

From eqn (42) we are able to find the smallest solution \(\pi_{\leq}(N, 4) > 1 \)
for large \(k < P_{j+1} \).

Corollary 3: Arithmetic progression with four prime variables.

From eqn (18) we obtain the arithmetic progression of algebra with four prime variables:
\[P_1, P_2, P_3, P_4 \]
\[P_k = P_1 + 2P_2 - 3P_3 + P_4, P_k = P_1 + (j-3)P_j - (j-2)P_j + P_1, 5 \leq j \leq k \leq P_{j+1} \]
(43)

We have Jiang function:
\[J_4(\omega) = \frac{J_4(\omega)\omega^{-3}}{\varphi(\omega)} \log^4 N (1 + o(1)). \]
(44)

\(X(P) \) denotes the number of solutions for the following congruence:
\[\left\lfloor q_1 + (j - 3)q_j - (j - 2)q_j + q_j \right\rfloor = 0 \text{ (mod } P), \]
(45)

Where,
\[q_1 = 1, \ldots, P - 1, j = 1, 2, 3, 4 \]

Example 8: Suppose \(k = 5 \) and \(k < P_{j+1} > 5 \). From eqn (43) we have:
\[P_k = P_1 + 2P_2 - 3P_3 + P_4 \]
(46)

From eqns (44) and (45) we have:
\[J_4(\omega) = \frac{J_4(\omega)\omega^{-3}}{\varphi(\omega)} \log^4 N (1 + o(1)). \]
(48)

Example 9: Suppose \(k = 6 \) and \(P_{j+1} > 6 \). From eqn (43) we have:
\[P_k = P_1 + 2P_2 + 3P_3 + P_4, P_k = P_1 + 3P_2 - 4P_3 + P_4 \]
(49)

From eqns (44) and (45) we have:
\[J_4(\omega) = \frac{J_4(\omega)\omega^{-3}}{\varphi(\omega)} \log^4 N (1 + o(1)). \]
(50)

We prove there exist infinitely many primes \(P_j, P_{j+1}, P_3, P_4 \) such that \(P_j, P_{j+1} \) are primes.

We have the best asymptotic formula:
\[\pi_{\leq}(N, 5) = \frac{J_4(\omega)\omega^{-3}}{\varphi(\omega)} \log^4 N (1 + o(1)). \]
(51)

Acknowledgements

I thank Professor Huang Yu-Zhen for computation of Jiang functions.

References