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Abstract
We give necessary and sufficient conditions for a linear connection without torsion to come from a Riemannian metric. The nullity space and the image space of the 
curvature are involved in the formulation of the results.
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Introduction

A Riemannian manifold defines a unique linear connection without 
torsion and conservative. By studying the properties of the space of nullity 
and images of the curvatures, we reduce the resolution of the inverse 
problem to a system of linear equations with some properties of the 
curvatures quite simple to verify.

The formalism used is that of [1] and [2] and the formulas are those of 
[3], the method following [4].

Canonical Connection of a Riemannian 
Manifold

Let M be a n dimensional differentiable paracompact manifold and of 
class ∞ , J is the natural tangent structure of the tangent bundle: TM → M. 
The derivation Jd  [5] is defined by dJ=[iJ, d].

Definition 1 

We call the Riemannian manifold, [1], the couple (M, E):

•	 M a differentiable manifold

•	 E a function of {0}TM= −  in +
 , with E(0)=0, ∞  on  , 

2 on the null section, and homogeneous of degree two such that ddJE has 
a maximum rank

The application E is called energy function, the fundamental scalar 
2-form Ω=ddJE defines a spray S [6]:

,S Ji dd E dE= −  				                (2.1)

the derivation si being the inner product with respect to S. The vector 
1-form G=[J, S] is called canonical connection. The connection G thus 
defined is an almost product structure: G2=I, I is the vector 1-form identity. 
By asking

1 1( ) ( )
2 2

h I and v I= + G = − G ,

h is the horizontal projector, projector of the proper subspace at the 

eigenvalue +1, v the vertical projector corresponding to the eigenvalue-1. 
The curvature of G is defined by

1 [ , ]
2

R h h=  					                  (2.2)

The vector 2-form R is also called the Nijenhuis tensor of h. The scalar 
2-form allows to define a metric g on the vertical bundle by

g(JX, JY) = Ω (JX, Y)

for all , ( )X Y TMχ∈ , where ( )TMχ  denotes the set of vector fields 
on TM.

There exists, [2], one and only one metric lift D of the canonical 
connection such that:

1.	 DJ=0;

2.	 DC=v, (C being the Liouville canonical field on TM);

3.	 DG=0;

4.	 Dg=0.

The D connection is called the Cartan connection. We have

[ , ] , [ , ] .JX hXD JY J JY X D JY h JY X= =
		               

 (2.3)

With the linear connection D, we associate a curvature

[ , ]( , ) ,hX hY hY hX hX hYX Y Z D D JZ D D JZ D JZℜ = − −

for all , , ( )X Y Z TMχ∈ . The relation between the curvatures ℜ and  
R is [2]:

( , ) [ , ( , )] [ , ( , )] ([ , ], ) ( ,[ , ]).X Y Z J Z R X Y JZ R X Y R JZ X Y R X JZ Yℜ = − + +  	
						                   (2.4)

In particular,

( , ) ( , ).X Y S R X Yℜ = −  			              (2.5)

In natural local coordinates on an open set U of M, (xi, yi ) ∈ TU, i, j ∈ 
{ 1,...,n}. The energy function is written [1] p.330

11 ( ,..., )
2

n i j
ijE g x x y y=

where gij (x
1,…, xn) are symmetric positive functions such that the matrix 

(gij (x
1,…, xn)i,j) is invertible. And the relation S Ji dd E dE= − gives the spray S

1 12 ( ,..., , ,..., )i i n n
i iS y G x x y y

x y
∂ ∂

= −
∂ ∂

with
1
2

i j
k ikjG y y γ=
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where
1 ( ).
2

kj ijik
ikj i j k

g gg
x x x

γ
∂ ∂∂

= + −
∂ ∂ ∂

By asking

k kl
ij iljgγ γ=  i, j, k, l∈ {1,…,n},

we have 
1
2

k i j k
ijG y y γ= .

We note ( , ) ( )j l j
i ilx y y xG = G , the horizontal projector is written:

( ) , ( ) 0.j
ii i j jh h

x x y y
∂ ∂ ∂ ∂

= − G =
∂ ∂ ∂ ∂

The vertical projector becomes

( ) , ( ) .j
ii j i iv v

x y y y
∂ ∂ ∂ ∂

= G =
∂ ∂ ∂ ∂

The curvature R= 1
2 [h, h] is then

1
2

k i j
ij kR R dx dx

y
∂

= ∧ ⊗
∂

with

, , , , {1,..., }.
k kk k
j jk l li i

ij i jj i l lR i j k l n
x x y y

∂G ∂G∂G ∂G
= − + G − G ∈

∂ ∂ ∂ ∂
Proposition 1

Let E be an energy function, G a connection such that G=[J,S]. The 
following two relationships are equivalent:

i. S Ji dd E dE= − ;

ii. 0hd E =
.

Proof: We notice that if we have the relation (i), we get

0 .S S J Si i dd E L E= =  				                 (2.6)

We can write successively, taking into account that E is homogeneous 
of degree 2 and that JS=C,

( ) 2S J S S J S Ji dd E L di d E L d E dE dE= − = − = −
or

.S JL d E dE=  					                (2.7)

From the formula [S, ]S J J S JL d d L d− = , we have

[S, ] (2 ) .S J J J S h J SL d E d E d L E d E dE d L E= + = − +

According to the two relations (2.6) and (2.7), we find

0.hd E =

Conversely, if we have 0hd E = , by definition [ , ]
2

J S Ih +
= , we can 

write

[ , ] 0.J Sd E dE+ =

By noting that hS S= and 0SL E = , we can go up the calculation and 
one obtains

S Ji dd E dE= −

Properties of the Curvature R of a  
Riemannian Manifold

From the properties of the connection stated above, we obtain the 
following classic results: for all , , , ( )X Y Z T TMχ∈

g( ( , ) , ) ( ( , ) , ); (3.1)
( , ) ( , ) ( , ) 0; (3.2)
( ( , ) , ) ( ( , ) , ) ( ( , ) , ) 0; (3.3)
( ( , ) , ) ( ( , ) , ). (3.4)

X Y Z JT g X Y T JZ
X Y Z Y Z X Z X Y

g T X Y JZ g T Y Z JX g T Z X JY
g X Y Z JT g Z T X JY

ℜ = − ℜ
ℜ + ℜ + ℜ =

ℜ + ℜ + ℜ =
ℜ = ℜ

Properties of the Horizontal Nullity 
Space of Curvatures

From the properties of the curvatures given above and by posing: 

{ ( ) ( , ) 0, ( )},
{ ( ) ( , ) 0, , ( )};

RN X TM suchthat R X Y Y TM
N X TM suchthat X Y Z Y Z TM

χ χ
χ χℜ

= ∈ = ∀ ∈
= ∈ ℜ = ∀ ∈

we have 

( ) ( )        ,  ; SJX ImR X KerR R i R X TMχ⊥ ⇔ ∈ = ∈   	          (4.1)

( ) ( ) ( )   ,   0, ,   ;JX ImR S X Y X TM Y TMχ χ⊥ ⇔ = ∈ ∀ ∈R 	 	

					                                (4.2)

( ) ( ) ( )     , , ,  ,  ; RX N JX S Y Z X TM Y Z TMχ χ∈ ⇔ ⊥ ∈ ∀ ∈R  	

						                (4.3)

( ) ( ) ( )     , , ,  , ,  ;X N JX Y Z T X TM Y Z T TMχ χℜ∈ ⇔ ⊥ ∈ ∀ ∈R 	
						                   (4.4)

( ) ( )   ,   0,  ,  .X N Y Z X Y Z TMχℜ∈ ⇔ = ∀ ∈R  	           (4.5)

Properties of the Nullity Space and the 
Curvature Image Space 

Let H=Imh the horizontal space, V=Imv the vertical space and ImR 
(respectively Im ℜ ) the module on F(TM) generated by the image of the 
curvature R (respectively ℜ ).

Proposition 2

On a Riemannian manifold (M, E) the following properties are verified:

1)	 Imℜ  and JNℜ  are orthogonal and Im JN Vℜℜ⊕ = ;

2)	 ImR and JNR+{C} are orthogonal; ImR Å {JNR+{C}}=V;

3)	 RN Nℜ=
4)	 At the neighborhood of a point z of TM, the subspaces 

, , , , ,R R R RN H N H N N hN JNℜ ℜ∩ ∩ ⊕  ImR and Imℜ  are involutive

Proof: The property 1) follows from the relation (4.4).

According to the relation (4.2), JX ^ ImR if and only if 
( , ) 0, ( ).S X Y Y TMχℜ = ∀ ∈  From the relation (2.4), we have

( , ) [ , ( )] [ , ( )] ([ , ], ) ([ , ]) 0.S X Y J Y R X JY R X R JY S X R JY Xℜ = − + + =  

Taking into account the relation (4.1), the relation 
[ , ] , ( )J JY S JY Y TMχ= ∀ ∈ and that the curvature R is semi-basic, we 

get

( , ) [ , ], ( )R X Y R JY X Y TMχ= ∀ ∈  		            (5.1)

As R is alternating bilinear on the vector fields of ( )TMχ  considered 
as (TM)-module, the relation is not possible unless X=S or, if X ∈ NR, and 
if X is generated by projectable vector fields in the nullity space of R. The 
converse is immediate according to the relations (4.2), (4.3) and (3.3).

The property NR =N
R

 follows from the link between ℜ  and R given 
by the relation (2.4) and from the above remark that NR is generated by 
projectable vector fields in NR. At the neighborhood of a point z of TM, the 
subspaces NR Ç H, N Hℜ ∩ ,  are involutive. These are well known results 
see [7].
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Let us now show that hNR Å JNR is involutive. You just have to check 
on the generators of hNR and JNR. Since hNR is generated by projectable 
vector fields in hNR and, hNR is involutive, then JNR is generated by the 
commutative generators in JNR. JNR is therefore involutive. It is the same 
for [X, JY] with RX hN∈  and RY JN∈ . Let K, L ∈ H such that JK and JL 
be orthogonal to JNℜ . As we have DJZ g=0 for all Z ∈ H, and taking into 
account [ , ]J JZ X JNℜ∈  for all X Nℜ∈ , we have

g(J[JK, L], JX)=0, g(J[K, JL], JX)=0,

that is to say, according to the nullity of the Nijenhuis tensor of J, we 
have

[JK, JL]=J[JK, L]+J[K, JL] ∈ JNℜ

This proves that Imℜ  is involutive.

The space ImR is also involutive, this follows from the assertion 3) and 
from the following property:

([ , ], ) 0, , Im .g JY JZ C for all JY JZ R= ∈

Proposition 3

Let X be a projectable vector field. The following two relationships are 
equivalent:

(i) [hX, J]=0

(ii) [JX, h]=0

Proof: For a connection G=[J,S], the torsion is zero, that is,

[J,h](X,Y)=0

for all , ( )X Y TMχ∈ . By developing the above relation, we have,

[JX, hY]+[hX, JY]+Jh[X,Y]+hJ[X,Y]-J[hX, Y]-J[X, hY]-h[JX,Y]-h[X, JY]=0

as we have hJ=0 and, h[X,JY]=0, because X being projectable vector 
fields by hypothesis, we have

[JX, h]Y+[hX, J]Y=J[X, h]Y

The vector field X being projectable and Jh=J, the term J[X, h] is null. 
We obtain

[JX, h]Y+[hX, J]Y = 0

Hence the equivalence of the relations (i) and (ii).

Proposition 4

If the rank of the horizontal nullity space hNR of the curvature R is 
constant, there is a local base of hNR verifying the proposition 3.

Proof: We will solve the equation

[hX, J]=0

The vector fields which annihilate the tangent structure by the Lie 
derivative is well known [8]. The equation to be solved is written in natural 
local coordinates on an open set U Ì M, (xi, yj) ∈ TU, i, j ∈ {1,…, n}

( )( ) ( ) ( )
j

i i j i i
ii j i i j

X xX x X x X x y
x y x x y
∂ ∂ ∂ ∂ ∂

− G = +
∂ ∂ ∂ ∂ ∂

that is to say:
( ) ( ) .

j
i i j

ii

X xy X x
x

∂
= − G

∂

As we have ( ) ( , )l j j
il iy x x yG = G , and j j

il liG = G , the previous equation 
is equivalent to

( ) ( ) .
j

l j
lii

X x X x
x

∂
= − G

∂
The condition for compatibility of the equation, according to the 

Frobenius theorem, is

( ) 0, , , , , {1,..., }.
j j

l s j s jli lk
li sk lk sik iX i j k l s n

x x
∂G ∂G

− + G G − G G = ∈
∂ ∂

This condition is none other than X ∈ hNR. Hence the result.

Proposition 5

On a Riemannian manifold (M, E), the space H Å ImR is involutive if 
the rank of the space hNR is constant.

Proof: It is clear that for all , ( ),X Y TMχ∈

[hX, hY]=h[hX,hY]+v[hX, hY]=h[hX, hY]+R(X,Y)

So [hX, hY] ∈ H Å ImR.

According to the proposition 2, it suffices to show that v[hX, R(Y,Z)] is 
orthogonal to JNR+{C}. We have

( ( , ), ) ( ( , ), ) ( ( , ), ) 0.hX hX hXD g R Y Z C g D R Y Z C g R Y Z D C− − =

The relation (2.3) gives

( , ) [ , ( , )]and [ , ] .hX hXD R Y Z v hX R Y Z D C h C X= =

The homogeneity of h leads to [h, C]=0, we get

g( [ , ( , )], ) 0.v hX R Y Z C =

Let T∈ hNR, then we can write

( ( , ), ) ( ( , ), ) ( ( , ), ) 0.hX hX hXD g R Y Z JT g D R Y Z JT g R Y Z D JT− − =

As we have g( ( , ), ) 0, ( , ) [ , ( , )]hXR Y Z JT D R Y Z v hX R Y Z= = and
[ , ]hXD JT h JT X= , we obtain

( [ , ( , )], ) ( ( , ), [ , ] ) 0.g v hX R Y Z JT g R Y Z v h JT X+ =

According to the proposition 4, we have v[h, JT]X ∈ JNR, therefore

( [ , ( , )], ) 0.g v hX R Y Z JT =

Hence the result.

Proposition 6

On a Riemannian manifold (M, E), the space H Å ImR Å JNR is 
involutive if the rank of the space hNR is constant.

Proof: The relation (2.4) is written:

ℜ(X, Y)Z=J[Z, R(X, Y)]-[JZ, R(X, Y)]+R([JZ, X], Y)+R(X, [JZ, Y]).

If we have Z ∈ hNR, we get ℜ(X, Y)Z=0 according to the relation 
(4.5). As the elements of hNR are generated by projectable vector fields 
in hNR, the relation above shows that [JZ, R(X,Y)] ∈ ImR Å JNR, for all 

, ( )X Y TMχ∈ . The proposition 5 shows that H Å ImR is involutive. We 
will now show that v[JZ, hX] ∈ JNR. According to the proposition 4, we can 
find a base of hNR verifying the proposition 3. This proves that v[JZ, hX] ∈ 
JNR.

Hence the result.

Proposition 7

Let G be a linear connection without torsion satisfying the following 
relationships:

1) there is an energy function E


which satisfies 0;Rd E =


2) the space H Å ImR is involutive;

3) the vertical space V decomposes into V = ImR Å {JNR +{C}} and 
the rank of JNR is constant, then the 1-form vd E



 is completely integrable

Proof: The kernel of vd E


 is H the horizontal space of G since we 
have 0v h =

, ImR by hypothesis, and the vertical vector fields such that 
0JXL E =



. We will show that these vector fields are involutive.
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We can write

[hX, hY]=h[hX, hY]+v[hX, hY]=h[hX, hY]+R(X, Y)

So

[hX, hY] ∈H Å ImR

Let v


be the vertical projector of the linear connection given by , vE d E
 

and vd E




 are identical on the vertical space JH since vJ v J J= =


. The 
difference between G



 linear connections coming from the energy function 
E


 and G is in the horizontal space Im h


and Imh, the two connections have 
the same curvature. It remains to calculate v[JY, hX] for all , ( )X Y TMχ∈ . 
If JY Î ImR, v[JY, hX] Î ImR by hypothesis. If JY ∈ JNR, according to the 
proposition 4, v[JY, hX] Î JNR and that H Å ImR Å JNR is also involutive 
according to the proposition 6. The scalar 1-form vd E



 is completely 
integrable like the scalar 1-form vd E





.

Theorem 1

Let G be a linear connection without torsion such that the rank of the 
curvature R is constant. The connection G comes from an energy function 
if and only if

1)	 the distribution H Å ImR is involutive and the vertical space 
V=ImR Å {JNR+{C}} with hNR is generated by projectable vector fields in 
hNR 

2)	 there is an energy function E


 such that 0Rd E =


.

Then, there exist a constant j function on the bundles such that ( )xe Eϕ


 
is the energy function of G

Proof: A necessary and sufficient condition for a connection G to come 
from an energy function E is according to the proposition 1,

dhE=0

This results in

dh dhE=0=2dRE

The conditions are therefore necessary according to the previous 
studies. Conversely, let E



 be an energy function such that 0Rd E =


. We 
will show that with the hypothesis, there exist a constant j function on the 
bundles such that

( ) 0.hd e Eϕ =


The equation is equivalent to
1 .hd d E
E

ϕ = −




The condition of integrability of such an equation is
1 1( ) 0,h hd d E dd E
E E

∧ + =
 

 

that is to say

.h h
dEdd E d E
E

= ∧
 



According to the proposition 7, vd E


 is completely integrable. We have, 
according to the Frobenius theorem,

0,v vdd E d E∧ =
 

By applying the inner product iC to the above equality, we obtain

,v v
dEdd E d E
E

= ∧
 



that is to say

.h h
dEdd E d E
E

= ∧
 



This is the condition of integrability sought.

Corollary

Let M be a differentiable, paracompact, connected manifold of 
dimension n ³ 2, G a linear connection without torsion such that the rank of 
the curvature is locally constant over M. Then, G is a canonical connection 
of a Riemannian manifold if and only if at the neighborhood of any point 
where the rank of the curvature R is constant;

1)	 The distribution H Å ImR is involutive and V=ImR Å {JNR +{C}} 
with hNR is generated by projectable vector fields in hNR

2)       There is an energy function E


such that 0.Rd E =


Proof: It follows from the theorem 1. Using a partition of the unit, we 
glue together the local metrics to have a global metric.

The search for an energy function E of G leads to the search for an 
energy function E



 such that 0.Rd E =


 In natural local coordinates, the 
curvature R is written:

,
1 ( ) , , , , {1,..., }.
2

l k i j
l ij kR y R x dx dx i j k l n

y
∂

= ∧ ⊗ ∈
∂

An energy function is written

1 .
2

i j
ijE g y y= 



Thus, the relation 0Rd E =


 is equivalent to the following system of 
equations:

,

r, ,

0

.

k
kl l ij

k k
kl ij kr l ij

g R

g R g R with l r

 =


= − ≠



 

In the matrix form, the system is written:
1 1
1, ,11 1

1 1, ,

0

0

ij n ijn t

n n
n nn ij n ij

R Rg g
A

A
g g R R

       −   =              

 

 







     



 

Remark: Solving the inverse problem leads to the system of linear 
equations, the other conditions are easy to verify, which is quite easy, in 
practice. In addition, the trace of ,

k
k ijR  is zero.

On an Isotropic Finslerian Manifold [9]

An isotropic finslerian manifold is a manifold [10] with a connection 
such that

2 ,JR EKJ Kd E C= − ⊗

,sR i R K=  denotes the sectional curvature.

If K ¹ 0, the manifold is of regular curvature, that is to say, the 
dimension of ImR is equal to n-1. Our theorem remains valid. In the case of 
a finslerian manifold of dimension 2, the theorem is written.

Theorem 2 [11]

Let M be a connected paracompact differentiable manifold of dimension 
2, G a connection without torsion with non-zero curvature over a dense 
subset of  M=TM-{0}.

G comes from a finslerian structure if and only if, at the neighborhood 
of any point where the curvature is non-zero,

     i. H Å ImR is involutive

     ii. The contracted of the curvature R  is such dR is of maximum rank and 
the function Si R  positive

To illustrate the results, we will give some examples.

Example 1

Let the manifolds M=3 have coordinates (x1, x2, x3) ∈ 3, (y1, y2, y3) on 
the bundle of the tangent space T3, G the connection [J, S] with
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31 2 3 1 2 2 3
1 2 3 12(( ) ) .xS y y y y e y y

x x x y
∂ ∂ ∂ ∂

= + + − +
∂ ∂ ∂ ∂

The coefficients j
iG of G being

j
j
i i

G
y

∂
G =

∂
, the non-zero coefficients are

31 1 1 3 1 2
1 2 32 , , .xy e y yG = G = G =

A base of the horizontal space of G is written

31 3 2
1 1 2 1 3 12 , ,xy e y y

x y x y x y
∂ ∂ ∂ ∂ ∂ ∂

− − −
∂ ∂ ∂ ∂ ∂ ∂

The curvature R is written:
3 1 1 2 3 3 2

1(( ) ) .xR e dx y y dx y dx
y
∂

= ∧ − − ⊗
∂

The horizontal nullity space is generated by

1 2 2 2 2 1 2 3
2 3 1( ) [( ) ( ) ] .y y y y y y y

x x y
∂ ∂ ∂

− + − + −
∂ ∂ ∂

The horizontal nullity space is not generated by projectable vector 
fields in hNR, NR is not involutive. This linear connection according to the 
proposition 2 cannot come from an energy function.

Example 2

We take 4M =   and the energy function is written:
1 2 3 11 2 2 2 3 2 2 4 21 ( ( ) ( ) ( ) ( ) ).

2
x x x xE e y e y e y e y= + + +

The canonical spray of E is written:
11 2 3 4 1 2 4 2 2 2 3 2

1 2 3 4 1 2 3

1 1 1( ( ) ( ) ) ( ) ( ) .
2 2 2

xS y y y y y y e y y
x x x x y y y
∂ ∂ ∂ ∂ ∂ ∂ ∂

= + + + − − − −
∂ ∂ ∂ ∂ ∂ ∂ ∂

The non-zero coefficients of G are

11 1 1 4 2 2 3 3 4 4 4 1
1 4 2 3 1 4

1 1 1, , , , , .
2 2 2

xy y e y y y yG = G = − G = G = G = G =

The horizontal fields are generated by

11 4 2 3 4 1
1 1 4 2 2 3 3 4 1 4

1 1 1, , ,
2 2 2

xy y y y y e y
x y y x y x y x y y
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− − − − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

The horizontal nullity space is generated by

2 3
2 2 3 3

1 1, .
2 2

y y
x y x y
∂ ∂ ∂ ∂

− −
∂ ∂ ∂ ∂

The two basic elements of the nullity space verifying the proposition 
3 are:

2 3

2 32 2
2 2 3 3

1 1( ), ( ).
2 2

x x

e y e y
x y x y

− −∂ ∂ ∂ ∂
− −

∂ ∂ ∂ ∂

The non-zero elements of the curvature are:
1

1 4
4,14 1,14

1, .
2 2

xeR R= − =

and 
14 1

1 4Im xR y e y
y y
∂ ∂

= − +
∂ ∂

(T4).

We see that H Å ImR is involutive.

The matrix is written
11

1

2

3

11

2

22

0 0 00 0 00 0 0 22
0 0 0 0 0 0 00 0 0 0

0 0 0 00 0 0 00 0 0
10 0 0 0 0 0 0 0 02 2

xx
x

x

x

xx

ee
e

e

e
ee

  
−   − 

    
    

=    
    
    
    

   

Example 3

We take M=4 and the energy function is written:

4 4 31 2 2 2 3 2 4 21 ( ( ) ( ) ( ) ( ) ).
2

x x xE e y e y e y y= + + +

The canonical spray of E is written:

4 1 2 2 2
1 2 3 4 1 4 2 4 3 2

1 2 3 4 1 2 3 4

1 (( ) ( ) )( ) .
2 2

xe y yS y y y y y y y y y
x x x x y y y y
∂ ∂ ∂ ∂ ∂ ∂ ∂ + ∂

= + + + − − − +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

The non-zero coefficients of G are

4 41 2
1 4 1 1 2 4 2 2 3 3 4 4
1 4 2 4 3 1 2

1 1 1 1 1, , , , , , .
2 2 2 2 2 2 2

x xe y e yy y y y yG = G = G = G = G = G = − G = −

The horizontal fields are generated by

4 41 2
4 4 3

1 1 4 2 2 4 3 3

1 1 1, , ,
2 2 2 2 2

x xe y e yy y y
x y y x y y x y
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− + − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

1 2
4 1 2

1 1 .
2 2

y y
x y y
∂ ∂ ∂

− −
∂ ∂ ∂

The horizontal nullity space is generated by

3
3 3

1 .
2

y
x y
∂ ∂

−
∂ ∂
The basic element of the nullity space verifying the proposition 3 is:

3

32
3 3

1( ).
2

x

e y
x y

− ∂ ∂
−

∂ ∂
The non-zero elements of the curvature are:

4 4

1 1 2
2,12 4,14 1,12

1, , ,
4 4 4

x xe eR R R= − = − =  

4 4

2 4 4
4,24 1,14 2,24

1 , ,
4 4 4

x xe eR R R= − = =

And ImR generated by

 
4 4 42 1 4 1 4 2

1 2 1 4 2 4( ), ,x x xe y y y y e y y e
y y y y y y
∂ ∂ ∂ ∂ ∂ ∂

− + − + − +
∂ ∂ ∂ ∂ ∂ ∂

(T4).

We see that H Å ImR is involutive.

The matrix is written
4 4

4

4 4 4

3

2

2

,12

0 0 0 0 0 00 0 0 4 4
0 0 0( ) ( ) 0 0 0 0 0 0

4 40 0 0
0 0 0 0 0 0 0 00 0 0 1
0 0 0 0 0 0 0 0

x x

x

x x x
i

ij j
x

e e
e

e e eg R
e

   
− −    

    
    

× = =    
    
    

    
   

,

4

4

4

3

4 4

,14

10 0 0 0 0 00 0 0 4 4
0 0 0 0 0 0 0 00 0 0( ) ( ) 0 0 0 0 0 0 0 00 0 0

0 0 0 1 0 0 0 0 0 04 4

x

x

x
i

ij j
x

x x

e
e

eg R
e

e e

  − −   
   
   

× = =    
   
   

    
   

,

4
4

4

3

4 4

,24

0 0 0 00 0 0 0
0 0 0 10 0 0 0 0 040 0 0 4( ) ( ) 0 0 0 0 0 0 0 00 0 0

0 0 0 1 0 0 0 0 0 04 4

x
x

x
i

ij j
x

x x

e e
eg R

e
e e

  
   
   − −   

× = =    
   
   

    
   

.
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Conclusion

To recognize a connection without torsion, that is to say,

[ , ] [ , ]J S and C S SG = =

comes from an energy function.

Case 1

The connection is of regular curvature, that is to say, the module 
generated on (TM) by ImR is of dimension n-1.  The necessary and 
sufficient condition is written:

i.	 H Å ImR is involutive

     ii.         There is an energy function E


 such that 0.Rd E =


Indeed, according to proposition 1, we have dhE=0, this implies dRE=0. 
So H Å ImR is the kernel of dE. Then, H Å ImR is involutive, and vd E



 is 
a completely integrable 1-form.

This result is valid for a Finslerian manifold.

Case 2

dim(ImR)<n-1. The necessary and sufficient condition becomes

i.	 The horizontal nullity space of the curvature R is generated by 
projectable vector fields in hNR, the space H Å ImR is involutive and the 
vertical space is written V=ImR Å {JNR +{C}}

    ii.          There exists an energy function E


 such that 0.Rd E =


Indeed, it is essential to have the horizontal nullity space of the 
curvature generated by projectable vector fields in hNR. This assertion 
involves that NR is involutive. With the help of the metric g, we have  
H Å ImR is involutive, the scalar 1-form vd E



is then completely integrable.
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