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Abstract
The purpose of this paper is to review Sophus Lie's methods for differential equations, shedding light on the Lie point symmetries of generic linear second order ordinary 
differential equations (O.D.E's). As a matter of necessity in the overall review, there are important contrasts highlighted in derivations of the infinitesimal generators, with and 
without the prior application of point transformations.
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Introduction

The technique of Lie group theory in resolution of differential equations 
is relatively modern.  Sophus Lie, the originator of this technique, developed 
its foundations very late into the nineteenth century.  The theorems 
discovered by Lie on second order ordinary differential equations are 
actually classical; with consequences harnessed by Kummer and Liouville 
[1,2], creating prospective gateways into functional analytic research 
(consider the necessity to find the kernel of the Kummer-Liouville transform 
addressed in the relevant section ). As  recently as the late twentieth 
century, there has been a resurgence of attempts to prove a reduction 
theorem by Lie for linearizable second order O.D.E's (see Results section  
below for the theorem).  Take as an example, the publication by Govinder 
and Leach [3].  The popular attempts encountered in academic archives fall 
short of rigorous descriptive detail.  This paper offers a well-detailed proof 
of the above mentioned reduction theorem, with a rare, tactfully systematic 
and didactic approach.

Given an nth  order O.D.E f(x, y, y’(x),…, y(n)(x))=0, there could possibly 
exist a non-trivial, non-degenerate map on its domain of definition (x, y) ↦ 
(X, Y) such that we have also f(X, Y, Y’(X),…, Y(n)(X))=0. If there exists a 
one-parameter family of such maps (Pλ)λ∈R :(x, y) ↦ (X(λ), Y(λ)) such that 
the following properties hold-

1. Pλ2 ∘ Pλ1=Pλ2 + λ1

2. P0=Identity

3. Pλ is infinitely many times differentiable with respect to x, y and λ,

then we say that the family { Pλ} is a one-parameter symmetry Lie 
group of transformations that is accommodated by the O.D.E. (X(λ), 
Y(λ)) is referred to as the global form of the group, and the corresponding 
infinitesimal form:
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x

v
y
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+

∂
=

∂
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called an infinitesimal generator for the group is obtained by setting

0 0: / | : |dYandX d d
dλ λφ
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Given the infinitesimal form, we can as well deduce the global form by 
integrating the autonomous system of differential equations

, ( , )(X Y) andX dYd X Y
d d

φ
λ λ

ξ= =

subject to the initial conditions 0X | xλ= = and 0Y | yλ = = .

Symmetry considerations of differential equations usually simplify 
these problems, by illuminating their reducibility properties.  The method 
of symmetry groups for differential equations gives rise to certain solutions 
called group invariant solutions, which may or may not be the entire solution 
set [4]. The most general technique for discovering Lie symmetries of an 
equation is by prolonging the infinitesimal vector field action into a jet 
space.  For the case of the O.D.E f(x, y, y ’(x),…, y(n)(x))=0,

the jet space will be an open subset of R 2+n, in which we will have the 
prolonged vector field action 

( )
1 ( )pr
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i iv v
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φ=
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= + Σ
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The prolonged vector field action on the jet space gives an induced 
invariance on that space from the underlying O.D.E.  For details on how 
the algorithm to compute the coefficients 

ixφ is derived, we refer the reader 
to [5]. Generally, the implementation of this prolongation technique in 
resolution of O.D.E's involves intuitively equating coefficients of monomials 
from the process, in line with the theorem given below.

Prolongation theorem Olver [5]

Let f(x, y, y’(x),…, y(n)(x))=0, be an O.D.E that is defined over an open 
subset M⊆R2. If G is a local group of transformations with infinitesimal 
generator v  acting on M and pr(n)v[ f(x, y, y’(x),…, y(n)(x))]=0 whenever f(x, y, 
y’(x),…, y(n)(x))=0, then G is a symmetry group of the O.D.E.

It is substitution of the initial variables with the canonical co-ordinates 
of the accommodated one-parameter symmetries that simplifies a given 
differential equation.  The pair of canonical co-ordinates (µ, ψ) must satisfy 
µ(X, Y)=µ(x, y) and ψ(X, Y)=ψ(x, y) + λ. The functions µ and ϕ(µ) for any 
real-valued analytic function ϕ are called invariants of the group.

Much work has been done on symmetry considerations in the specific 
case of linear second order O.D.E's.  For instance, we have explicit 
derivations of eight independent accommodated infinitesimal symmetries 
[6]. Detailed account of the crucial Kummer-Liouville transform which 
pertains to this class of equations [1].  In the ensuing content of this paper, 
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the importance of semi-invariants of the generic equation is frequently 
brought up.  This is an aspect required in obtaining a quality overview of 
the symmetries, which often tends to be overlooked.  Hence, a rare and 
accurate proof of Sophus Lie's theorem on linear second order O.D.E's is 
systematically constructed.

The relevance of Lie symmetries in resolution of higher order O.D.E's is 
then briefly discussed in conclusion.

Point Symmetries of Generic Second 
Order Linear O.D.E's

Point symmetries without point transformations

The equation under examination throughout this section will be the 
homogenous equation 

1 0'' ( ) ' a ( ) 0 (1).y a x y x y+ + =

We need not include the case where a1 and a0 are both constants, which 
is immediately resolved by means of the characteristic quadratic equation.  
Although the generic case in non-homogenous, the superposition principle 
for linear O.D.E's emphasizes the need for solving (1).  Solutions to (1) exist 
locally whenever 

1
1( ) ( ),a x C I∈  0a ( ) ( )x C I∈

for an open, non-empty subinterval (I) of the real number line, so we 
take this as given a-priori.

Let ‘v’ be a vector field 
x y

ξ φ∂ ∂
+

∂ ∂
defined on some open subset U ⊆ I × 

R. The second prolongation of ‘v’ is given as (2) : x xx

x xx

pr v v
y y

φ φ∂ ∂
= + +

∂ ∂
.  

By the given prolongation theorem, equation (1) accommodates ‘v’ if

(2)
1 0[ '' (x) y' a (x) y] 0pr v y a+ + =  whenever 1 0'' (x) y' a (x) y 0y a+ + = ,

in which case ‘v’ is referred to as an infinitesimal Lie symmetry of (1). 
The collection of all infinitesimal symmetries accommodated by a differential 
equation forms a linear space referred to as a Lie algebra. Symmetry 
considerations of (1) arise from the need to simplify or give more elaborate 
procedures for computing its solutions, and this leads us to implement the 
prolongation technique for differential equations. To this end, we compute 
the coefficients φx and φxx respectively to be

2) (( [ )x
x x y xx xx x x x xD yy y y yξ ξ ξφ ξφ φ φ= + = + − +−

2(y ) ,] x yxx xx x y xx xyyy yξ ξ ξφ ξφ+ + = + − −

2 2)( 2 ( )xx
xx x xxx xx xy x yy xyD y y Yφ φ ξ ξ φ φ φ+ = + += −

2 32 (y ) 2 )3 (yy x xx x xy x x xx y yyx x x xy yY yyξ ξ ξ ξ ξφ+ − −−− −

The symbol ‘D’ stands for the total derivative, subscripts of ξ 
and φ symbolize partial derivation, and otherwise, subscripts denote 
total derivation with respect to the given variables. We will now go into 
considerable detail on how to compute the infinitesimal symmetries (or 
generators) of (1) directly.  First of all, we determine that

(2)
1 0[ '' ( ) ' a ( ) ]pr v y a x y x y+ +

1 0 0 1'( ). a '( ) a ( ) a (. . )'( ) x xxa x x xy yx xξ ξ φ φ φ++= ++

1 0 0 1' ' a 'y a ( ' 'x
y xa y a y yφ φ φξ ξ ξ+ + + −= +

2 2( ') ) 2 ' ( ') ''y xx xy yy yy y y yξ φ φ φ φ− + + + +

2 3' 2 ( ') 2 '' 3 ' '' ( ')xx xy x y yyy y y y y yξ ξ ξ ξ ξ− − − − − .

Imposing that (1) accommodates ‘v’, we use the symmetry condition 

(2)
1 0[ '' ( ) ' a ( ) ] 0pr v y a x y x y+ + =   whenever, 

1 0'' ( ) ' a ( ) 0y a x y x y+ + =  to 
determine further that

3 2
1 1 1( ') [ 2 2 ]( ') [ ' 2yy yy xy y x xyy a y a aξ φ ξ ξ ξ ξ φ− + − + + − +

1 0 0 0 1 02 3 ] ' 'y a 2 0xx x y x xx xa a y y a a a yξ ξ ξ ξ φ φ φ ξ− + + + + + + + =

 Because the coefficients from the infinitesimal generators do not 
depend on derivatives of y, we set the coefficients of (y’)3 , (y’)2 and y’ above 
each equal to zero to realize three equations.  A fourth equation also arises 
by way of the other terms.

From the coefficient of (y’)3, we have ξyy= 0 ↔  ξ(x, y) = A(x) + B(x).y.

From the coefficient of (y’)2, we have

φ(x,y)=[C(x)+2A’(x)-2a1A(x)]y+B’(x)y2 - a1B(x)y2 +D(x). 

From the coefficient of y’,

-3 a1' A(x) - 3 a1' B(x)y - 3 a1A'(x) - 3 a1B'(x)y + 2C'(x) + 3A''(x) + 3B''(x)

y + 3 a0B(x) y = 0  

giving two consequential equations;

-3 a1A(x)+2C(x)+3A′(x)=k                           (I) 

- a1 ′B(x)- a1B′(x)+B′′(x)+a0B(x)=0               (II),

from the free terms and coefficients of y respectively, where k is a 
constant in (I).  Afterwards, the terms from the symmetry condition which 
are not multiplied by y′ yield three more consequential equations;

a0′B- a1 a1′B- a1
2B′+B′′′-2 a1′B′- a1 ′′B+ a0 a1B=0             (III),

a0′A+2 a0A′+ a1C′-2 a1 a1′A-2 a1
2A′+C′′+2A′′-2 a1′A-4 a1′A′=0       (IV),

D′+ a1 D′+ a0 D=0                         (V).

Equations (II) and (III) are both derived directly from the adjoint of the 
original equation (1), that is, 

B′′- (a1B) ′+ a0 B=0                     (II′).

By straightforward computations involving (I), equation (IV) can be 
reduced to the conditions

a0′A+2 a0A′=(C′′+ a1C′)/3              (IV′),

A′′+(4 a0 - a1
2

 - 2a1′)A′+(2 a0′
 - a1 a1′- a1′)A=0           (IV′′).  

At this juncture, we have obtained sufficient information to tell the most 
general appearances of the coefficient functions from the infinitesimal 
symmetries.  Let the constant k in (I) be denoted c1.  In (V), we determine 
that D(x)=c2y1+c3y2, where y1 and y2 are specific linearly independent 
solutions of (1).  From (II′), we have 

1 4 1 5 2( ) exp( )[ ].B x a dx c y c y= ∫ +

To solve for A(x), it is helpful to examine the normal form of (1), that is,

(y*)'' + p(x)y* = 0                (1')

obtained via the point transform  

( )1y exp( 1/ 2 )
x

a d yτ τ= − ∫ *

Hence, the coefficient of y* in the normal form, which is identified as the 
semi-invariant of (1) is given as, 

2'
1 1) 0 2

p(
4

aa
x a= − − .  Therefore, we can rewrite (IV′′) as A''' + 4pA' + 

2p'A = 0.  It is then easy to check that y*1 . y*2 is a solution to (IV'') where y*1 , 

y*2 are both solutions to the normal form of (1). Therefore, we determine the 
most general solution to the third order linear O.D.E (IV'') to be:

2 2
1 6 1 7 1 2 8 2exp( )[ 2 ].A a dx c y c y y c y= ∫ + +
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This is substituted in (I) to give 
' ' ' '1

1 1 1 6 1 1 7 1 2 1 2 8 2 2
1C ( 3 3 ') 3.exp( )[ ( ) ].
2 2

cc a A A a dx c y y c y y y y c y y= + − = − ∫ + + +   

Hence, we obtain the most general point symmetry of (1), without any 
prior point transformation, to be 

2
1 1( ) ([ 2 ' 2a ] [B' a ] ) .A By c A A y B y D

x y x y
ξ φ∂ ∂ ∂ ∂

+ = + + + − + − +
∂ ∂ ∂ ∂

After substituting the values obtained above, we can separate the most 
general symmetry by the eight constants 8{ } 1ci i= as follows:

8

1
i i

i
c v

=
∑
Suggestive of an eight-parameter symmetry group of (1).  The process 

of computing the symmetries as done above for this case turns up an obvious 
problem: almost all the single-parameter symmetries depend on having a 
specific solution y1 or y2 of (1) in hand a-priori. The only single-parameter 

symmetry which does not depend on any specific solution is y
y

∂
∂

, which 

corresponds to the so called scaling group.  It is accommodated by all 
linear differential equations.  In this study, the scaling group reduces (1) to 
a Riccati equation of the first order, when applied alone. We observe this 
development by computing the global form of this one-parameter group to 
be

( , ) ( , ),X Y x e yλ=

and then a canonical co-ordinate for the group is ψ ln  y=  because 
ψ( , ) ψ( , )X Y x y λ= + Substituting the dependent variable in (1)  with the 
canonical co-ordinate, we obtain the first order non-linear Riccati equation

2w' w ( ) ( ) 0,1 0a x w a x+ + + =     where   'w Ψ= .

In fact, there is also a reverse correspondence in this regard, being 
that every Riccati equation can be transformed into a linear O.D.E of the 
second order.

We will hereby make a few further remarks on Riccati equations, as 
they are relevant to this study.  Special Riccati equations have the form

2y'(x) ay ,abx= +

where a, b, α are real constants. When α = 0, the special Riccati 
equation is integrated by separation of variables:

2 .dy dx
ay b

=
+

Another easily solved case is α=-2, in which substitution of the 
dependent variable z=1/2 maps the above Riccati equation to the form 

2dz za b
dx x

 = − −  
 

which can then be integrated by quadrature. Riccati and Bernoulli 
both discovered that the special Riccati equation can be mapped to the 
form wherein α=0, and can hence be integrated by quadrature in terms of 
elementary functions, if α takes values in one of the two rational sequences

4 4, 1,2,3,...
2 1 2 1

n n n
n n

   − − =   − +   

The limit of both of these sequences is -2. Later, Liouville showed that 
these Riccati equations can be mapped to a form that can be integrated by 
quadrature in terms of elementary functions only if α takes a value in one of 
these two rational sequences.

In the case of a general Riccati equation
2y' P( ) Q( ) ( )x x y R x y= + +

it is linearizable by a point transformation of the dependent variable y to 
a linear O.D.E of the first order, if and only if it has a constant solution [7]. 
More details on the simplification and integration of such O.D.E's can be 
readily accessed, but we now return our focus to point symmetries of (1).

To modify the result on symmetries of (1) obtained prior to remarks on 
Riccati equations, there are point transformations which we may implement 
before employing the prolongation technique.  The most general point 
transformation which preserves the order and linearity of (1) is called the 
Kummer-Liouville (KL) transformation, and we will unravel more subtle 
properties of the infinitesimal symmetries by engaging it.

Point symmetries with KL point transforms

The Kummer-Liouville transform is given by 
2y v( ) , ( ) ( ); , ( ), uv 0x z dt u x dx KL u v C I x I= = ∈ ≠ ∀ ∈

which rearranges (1)  to be of the form
1

1 0 1 0( ) ( ) 0 (2); ( ) ( ), ( ) ( )z b t z b t z b t C J b t C J+ + = ∈ ∈    

Where J is an open, non-empty sub-interval of the real number line. 

Theorem (St ckel - Lie) [1]

The Kummer-Liouville transform is the most general point transform 
which preserves the order and linearity of (1).

For clarity, we will use the prime sign (' ) to denote differentiation with 
respect to x and an overset dot to denote differentiation with respect to t. 
Observe that we need the following three to occur in order to obtain (2)  from 
(1)  by way of transform (KL).

(i)  We must have the non-commutative factorization

2 1
' ' 'Ly ( ) ( ) 0;v u v dD r t u D r t u y D

v u v dx
  = − − − − − = =  
  

where r1 (t) and r2 (t)satisfy the Riccati equations:

2 2
1 1 1 1 0 2 2 1 2 1 0( ) ( ) 0; ( ) ( ) 0r r b t r b t r r b t r b b t+ + + = − − + − =

 

(ii)  1 12 ' ' ( ) ( )1v v u u b t u a x− −− − + =

(iii) 2'' ' ( ) 0.1 0 0v a v a v b t u v+ + − =

The reduction of (1) to (2)  was posed as Kummer's problem, which was 
to find the set of all KL transformations that could do this.  It is known that 
Kummer's problem is always solvable.  As a combination of the above three 
requirements for the KL transform, we get that (1) can be reduced to (2) if 
and only if the following two conditions are satisfied

1
2

1 1
1 1( ) exp( ( ) ) exp( (t) ) ( )
2 2

v x u a x dx b dt E−= − ∫ ∫

2
2

0 0 2
1 ''' 3 '' ( ) ' ( ) (E )
2 ' 4 '

t t B t t A x
t t

 − + = 
 

where 
2 2

1 1 1 1
0 0 0 0

'A ( ) ; ( )
2 4 2 4

a a b bx a B t b= − − = − −


are respectively called the semi-invariants of (1)  and (2).  We solve (ii) 
over v in order to get (E) and then we substitute (iii) by (E) using the relation 
u=t′ to get (E2).

At the crux, we wish to reduce (1) to a linear O.D.E of autonomous form, 
that is, one with constant coefficients;

1 0 0 (2 '),z b z b z+ + = 

where the coefficient b0 is a real number, while b1 may either be real or 
purely imaginary.

(2′) can be factorized either through the noncommutative operators of 
the first order-

2 1
' ' ' 0;y

v u vL D r u D ru y
v u v

  = − − − − − =  
  
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or through the commutative operators of the first order-

2 12

1 1 ' 1 ' 0y
v vL D r D r y

u u uv u uv
  = − − − − =  
  

Where r1, r2 are roots of the characteristic equation; r2+b1r+b0=0.

We remark that (1) can be reduced to (2') by transform KL if and only if 
the following occur.

(i)  (1) admits a certain one-parameter Lie symmetry

(ii) u(x) satisfies   
221 '' 3 ' 21 ( )0 02 4 4

bu u b u A x
u u

 −   − + + =      

(iii) 
3'u'' ( ')

''' 6 6 4 ' 2 ' 00 02
u u

u A u A u
u u

− + + − =

(iv)The multiplier v and the kernel u of the KL transform are related 
through the formulas

1 1

1
2 1 1( ) exp( ( ) ) exp( );

2 2
v x u a x dx b udx

−

= − ∫ ∫
2

1 0 0v'' a ' a ( ) 0.v v b t u v+ + − =

(v)  The resolvent of (2') is given by the function 

 ( )1
1)R( expx u a dx−

= −∫
and it satisfies

(vi) 2''' 3 a '' (4 a ' 2 a ) ' (2 a ' 4 a ) 0.1 0 1 1 0 0 1R R a R a R+ + + + + + =

The one-parameter existence follows from the reducibility of (1) to 
autonomous form (2'), as will soon be discussed. Condition (iii) can be 
obtained from (ii) by calculation, and then (vi) can be obtained from (iii) by 
way of the resolvent function

1 2R( ) : y ( ) ( ).x x y x=

To be substituted in the resolvent function, we have linearly independent 
solutions of (1) given by 

( )
2

1/2 1
1,2 1 0y ( ) exp 1/ 2 ( ) exp ;

4
bx u a x dx b udx−  

= − ± −  
 

∫ ∫
for the case of KL transform to autonomous form (2') .

Focusing now on the general symmetry of (2), we must recall the KL 
substitutions 

 y=vz, t=∫udx, so as to observe that
01

'2
21

1 02

2 2 0

a xa x

b uvv u v v v uy y b u y b u
v u v v vu v

′′ ′ ′′ − + − + + − + − + =  
  

′
′



′
′ ′





              (3).

By applying the second prolongation under the condition b0′= b1′=0, we 
realize that (3) admits the infinitesimal generator 

1
1 'v y
u x vu y

χ ∂ ∂
= +

∂ ∂

which precisely corresponds to the case of reduction to autonomous 
form (2'). Thus, the canonical coordinates for χ1 are made of the pair (t, z), 
where z:=y/v is called an invariant and t=∫ udx. The invariant is obtained by 
integrating the differentials

,
'

dx dy uvudx dy
yvξ φ

= ⇔ =

Resulting in y/v=constant, which is why y/v is an invariant. The other 
canonical coordinate is simply

0

.
1/

x

x

d udx
u
τ

=∫ ∫
Since the pair of canonical coordinates results in the reduction of (1) 

to autonomous form, the Lie symmetry χ1 is the requirement addressed 
in condition (i) above. Involving the autonomous case, equation (3) yet 
again accommodates an eight-parameter Lie symmetry, and so seven other 
independent single-parameter symmetries besides χ1 are mentioned as 
follows:

2 v
y

χ ∂
=

∂
                              3 1 udxχ χ= ∫

4 2 udxχ χ= ∫                         
5 1

y
v

χ χ=
  

2
6 2 7 1 2( ) ( )y yudx udx

v v
χ χ χ χ χ= = +∫ ∫

2
8 1 2.( ) ( )y yudx

v v
χ χ χ= +∫

 The linear space spanned by χ1 to χ8 is a Lie algebra that is stable 
under the Lie bracket structure [.,.] as shown in the table included below 
Table 1. Instability under the Lie bracket or commutator would have 

implied the necessity to include more vector fields, other than{ }8

1i i
χ

= , to 

the infinitesimal generators spanning the Lie algebra accommodated by 
(3).  This is at large, due to the fact that O.D.E's only accommodate finite 
dimensional Lie algebras.  The element in the i'th row and j'th column of the 
table is the vector field [χi, χj].

Note that the characterization of Lie brackets [X, Y] f = X(Y(f)) - Y(X(f))  
for , jiX X Y Y

x xi j
∂ ∂

= =
∂ ∂

and any C∞ function f gives us the formula:

[ ], Y .
i iY Xj jX X Y

x x xj j ii j

 ∂ ∂ ∂ ∑= −∑  ∂ ∂ ∂  

Table 1. [χi, χj] is the ith row, jth column (1 ≤ i, j ≤ 8).

χ1 χ2 χ3 χ4 χ5 χ6 χ7 χ8

χ1 0 0 χ1 χ2 0 0 2χ3+χ6 χ5

χ2 0 0 0 0 χ1 χ2 χ4 χ3+2χ6

χ3 -χ1 0 0 χ2 -χ5 0 χ7 0

χ4 -χ2 0 -χ2 0 χ3-χ6 χ4 0 χ7

χ5 0 -χ1 χ5 χ6-χ3 0 -χ5 χ8 0

χ6 0 -χ2 0 -χ4 χ5 0 0 χ8

χ7 -2χ3-χ6 -χ4 -χ7 0 -χ8 0 0 0

χ8 -χ5 -χ3-2χ6 0 -χ7 0 -χ8 0 0

The Lie brackets of the infinitesimal symmetries in their initial computed 

forms { }8

1i i
v

=
 are not so readily determined.  Nevertheless, the symmetries 

{ }8

1i i
χ

=  can be obtained as linear combinations of { }8

1i i
v

= from functional 

specifications for the kernel (u) and multiplier (v) stated above.  For instance, 
we have the chiefly required symmetry for conversion to autonomous form 

obtained as: 
1

1 7 1 1.2
v b vχ = +  

Although the KL transform gives more insight into the symmetry 
concept being addressed, all the infinitesimal generators except χ6 (which 
corresponds to the scaling group) depend on the special kernel function 
u, and this is still indirectly tantamount to solving (1) beforehand. For this 
reason, construction of algorithms for computing the kernel has a substantial 
heuristic value in itself. 

Results

It is useful to engage a second point transformation to (1) in discussions 
of its Lie symmetries, which is the reduction to normal form. After the generic 
KL transform, we reduce (2) into normal form by changing the dependent 
variable to z  where 
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1
1( ) exp ( )

2

t

z z b dτ τ
 −

=  
 

∫
and the result of this transform is 

22
1 1

02 0 (2 '')
2 4
b bd z b z

dt
 

+ − − = 
 



where 
2

1 1B0 0 2 4
bb

b= − −


 has previously been identified as a semi-

invariant of (2). Having presented sufficient pertinent information, this 
particular transform is geared towards validating Sophus Lie's theorem on 
linear O.D.E's of the second order, as stated below.

Theorem (Lie's theorem on linear second order O.D.E's) [8]

The O.D.E (1) can be mapped via a point transform into the form 0Y = , 
which implies accommodation of the eight-dimensional Lie algebra sl(3,R).

Now, we can map (1) into the above mentioned form from (2'') by finding 
which value of u solves B0=0.  What we obtain concretely is 

0z =

In (2'') after a double point transformation of (1). The details for 
justification of this transformation are given below.

By setting the semi-invariant of (2) equal to zero, we get the semi-
invariant of (1) to be 

2

0
1 '' 3 ' .
2 4

u uA
u u

 = −  
 

It is clear that the associated homogenous equation A0=0 accommodates 
the scaling group, of which the global form is Pλ(x,u)=(x,eλu), so we obtain a 
canonical coordinate for this one-parameter group to be ( )ln uψ = .Recall 
the condition that u ≠ 0 on the interval I of interest.  If u is negative then 

( )ln uψ = ,and this sign change will not tamper significantly with the result 
of the ensuing computation.  Consider the first case,

2exp( ) ' 'exp( ) u'' ''exp( ) ( ') exp( ),u uψ ψ ψ ψ ψ ψ ψ= → = → = +

and we have the following simplification for the semi-invariant of (1);
2 2

2 2
0

1 3 '' ( ') '( '' ( ') ) ( ')
2 4 2 4 2 4

w wA ψ ψψ ψ ψ= + − = − = −

where ' wψ = . The equation given just above is a Riccati equation, 
so we hereby employ the correspondence between Riccati equations and 
second order linear O.D.E's.  By substituting w with 2 'ζ

ζ
−  , the Riccati 

equation becomes '' 00Aζ ζ+ = .

This linear equation is always solvable for ζ in C2(I), from which we 
recover u by reversing the prior substitutions as shown below.  

2 'w ζ
ζ

= −

2ln( )wdx kζ⇒ = − +∫

2ln( ) kψ ζ⇒ = − +

2exp[ 2 ln( ) ]
keu kζ

ζ
⇒ = − + =

where k is a constant of integration and ζ is a non-trivial solution to 
(1'). This given value of u solves B0=0. 

We should remark that the transform from (1) into its own normal form 
(1') is only a particular case of the (KL) transform with the functions

1 *.
1( ) 1; ( ) exp ( ) ;
2

u x v x a x dx z y ≡ = − = 
 ∫

Therefore, the kernel u of transform KL enables us to restructure the 
Lie symmetries of (1), so as to reduce this O.D.E into various simpler forms.  

We can take u as the auxiliary variable to examine the two most important 
cases; namely b0′= b1′= 0   for reducibility of (1) to autonomous form, and 
B0=0 for reducibility of (1) to the form 0Y = , which corroborates Sophus 
Lie's theorem.

As a further remark, it is noteworthy that an arbitrary O.D.E of the 
second order is linearizable if and only if it accommodates an 8-parameter 
symmetry group, which is the symmetry group of maximal dimension for 
this class of equations.  If it does accommodate such a group, then it can 
be mapped by point transformation(s) to the equation 0Y = . If it does not 
accommodate a symmetry group of dimension 8, then it accommodates 
a 0-, 1-, 2-, or 3-parameter symmetry group. This is another aspect of 
Sophus Lie's categorization of second order ordinary differential equations.  
For example, as we have seen above, the non-linear differential equation 

involved in the semi-invariant of (1), which is given as
21 '' 3 ' 0

2 4
u u
u u

 − = 
 

, is 

linearizable. The Lie algebra of infinitesimal symmetries accommodated by 
this equation is spanned by the eight vector fields listed as follows.  

3
2

1 xu
u

χ ∂
=

∂       
1 1

2 2
2 2xu u

x u
χ

− ∂ ∂
= −

∂ ∂          
1

2
3 u

x
χ

− ∂
=

∂
           4 x

x
χ ∂

=
∂

5 x
χ ∂

=
∂

        6 u
u

χ ∂
=

∂
              

3
2

7 u
u

χ ∂
=

∂
              2

8 2x xu
x u

χ ∂ ∂
= − +

∂ ∂

Conclusion: Point Symmetries of Higher 
Order O.D.E's

It is befitting to pass a few further comments on point symmetries of 
O.D.E's of order three and higher, following the details elucidated on those 
of the second order.  For each given order, there is a maximal dimension 
for admissible symmetry groups [9], such as is eight for equations of the 
second order.  Whenever an O.D.E admits a Lie group of one-parameter 
symmetries of the maximal dimension, then it is linearizable by a point 
transformation.  Moreover, whenever the canonical coordinates from an 
accommodated one-parameter symmetry are employed by change of 
variable(s), the original O.D.E is transformed into another form with order 
one less. For instance, we have already seen as an explicit application of 
the scaling group in transforming the second order equation (1) into a first-
order Riccati equation.

The main challenge that lingers in the midst of an abundance of one-
parameter symmetries is that, whenever a given equation is reduced to 
another form by any one of them, the resulting form usually fails to inherit 
any of the symmetries which were present at first [10]. To simplify further 
using the Lie symmetry technique, one would then have to perform the 
infinitesimal symmetry prolongations again, which may or may not yield any 
vector fields. Not every differential equation admits a Lie symmetry to begin 
with, and computer algebra is encouraged for equations with order three or 
higher due to the rapid growth of the number of computations involved with 
each increment in order (and degree) of the differential equations. These 
signal a number of pronounced limitations involved with the approach of Lie 
groups.  Nevertheless, whenever present, the wieldiness of Lie symmetries 
provides several opportunities for greater in-depth study of differential 
equations at large, as exemplified above.

References
1.	 Berkovich, Lev M, and Nikolai H. Rozov. “Transformation of Linear Differential 

Equations of Second Order and Adjoined Nonlinear Equations.” Archivum 
Mathematicum 33 (1997): 75-98.

2.	 Berkovich, Lev M, and Fedor L. Berkovich. “Transformation and 
Factorization of Second Order Linear Ordinary Differential equations and its 
Implementation in REDUCE.” Univ Beograd Publ Elektrotehn Fak 6 (1995): 
12-25.

3.	 Govinder, KS, and P.G.L. Learch. “An Elementary Demonstration of the 
Existesnce of sl(3,R) Symmetry for all Second-Order Linear Ordinary 
Differential Equations.” SIAM Review 40 (1998): 945-946.



J Generalized Lie Theory Appl, Volume 14:1, 2020Opara U

Page 6 of 6

4.	 Bluman, George. “Invariant Solutions for Ordinary Differential Equations.” 
SIAM J Appl Math 50 (1990): 1706-1715.

5.	 Olver, Peter J. “Applications of Lie Groups to Differential Equations (Second 
Edition).” Springer-Verlag New York, Inc (1993).

6.	 Hydon, Peter E. “Symmetry Methods for Differential Equations - A Beginner's 
Guide.” Cambridge University Press: C. W. Kilmister (2000). 

7.	 Ibragimov, Nail H. “Memoirs on Integration of Ordinary Differential Equations 
by Quadrature.” Archives of ALGA 5 (2008): 27-62.

8.	 Olver, Peter J. “Equivalence, Invariants, and Symmetry.”  Cambridge 
University Press; J. F. Toland, (1995).

How to cite this article: Opara, Uchechukwu. “On the Eight Dimensional Point 
Symmetries of Second Order Linear O.D.E's.” J Generalized Lie Theory Appl 14 
(2020): 297. doi: 10.37421/GLTA.2020.14.297

9.	 Stephani, Hans, and M.A.H MacCallum. “Differential Equations: Their 
Solution Using Symmetries.”  Cambridge University Press, Cambridge 
[England]: New York (1989). 

10.	Olver, Peter J, and Philip Rosenau. “Group-Invariant Solutions to Differential 
Equations.” SIAM J Appl Math 47 (1987): 263-278.


